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Abstract 
 

Can genetic operators be used to produce human-centric source-code documents for 
human-interactive and collaborative programming practice? 

Addressing this question, a novel automated source-code generation system is created 
which synthesizes, using genetic operators, object-oriented compilable files, which better 
conforms to human coding conventions than current benchmark genetic algorithms. This 
project: 

• Provides a new form of AI for automatic source-code generation. 
• Implements novel use cases for automatic source-code generation in practical 

collaborative applications. 
• Benchmarks the new algorithm against a standard program synthesis benchmark 

suite. 
• Assesses a genetic realignment algorithm in the context of crossover for elitest 

fitness. 
• Explores novel approaches to interaction methods with a genetic auto-coder for 

multiple simultaneous users. 

As of the beginning of this project, there were no existing implementations of source-
code generators designed for human legibility while synthesizing for arbitrary language 
environments: automated program synthesis algorithms derived from genetic operators 
traditionally operate on specialist languages, with bytecode or machine code solutions or 
suffered significantly with comprehension against human written code. 

The novel algorithm introduced in this thesis interjects into current discourse with a 
heuristic approach which can operate with relative language agnosticism, while retaining 
common coding conventions, indentation, arbitrary code length, looping operators, 
multiple function definitions and function calls. 

Using this new algorithm, this thesis explores three diverse experimental phases to 
analyse potential use-cases, from a qualitative perspective:  

An automatic programmer for coding problems: as a tool to support human software 
developers, for simple programming tasks. 

A co-creative environment with Artificial Life: demonstrating the automatic 
programmer’s ability to create evolvable behaviour controllers which adapt to survive 
under various environmental pressures and to co-evolve with human interactors. 

A public facing music generator: as a collaborative medium for live performance 
environments, providing human-guided fitness training for live evolution of audio. 

The thesis concludes that the algorithm is successful in automatic coding for implicit 
fitness or regression environments, with several limitations relating to the fitness function 
used and the size of the search space. These limitations are established and persist across 
genetic methods for automatic coding. Regardless of the limitations, this approach 
demonstrates valuable use cases in artistic mediums. 
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Chapter 1. Introduction 
 

“We recommend researchers to focus more on increasing the readability and 
interpretability of the generated programs while preserving GP’s unique ability to find 

diverse, novel, and innovative solutions. Furthermore, the community should focus 
more on providing fast and accessible tools and frameworks to make it easier for 

researchers as well as software developers to use GP-based approaches” 

Dominik Sobania et al, A Comparison of Large Language Models and 

Genetic Programming for Program Synthesis [1] 

 

1.1: Rationale and Background 
 

There are very few automatic human-facing source-code generators which can construct 
multi-line, complete functions, particularly with indentation, loops, conditional 
statements, and function calls for use in arbitrary language environments. This thesis 
introduces a new heuristic algorithm which addresses this gap in literature. 

This algorithm implements evolutionary procedures to synthesize working solutions to 
disparate use cases of programs. A major contribution of this algorithm over classical 
Grammar-based automatic programming implementations is the structuring mechanisms 
to permit dynamic variable allocation and code blocks with indentation. 

This project provides a series of modifications to genetic program synthesis which adopt 
elements of automatic code generation while following linearizable representations to 
construct source code, opposed to more common tree-based representations, allowing 
more direct implementation of biologically inspired correction and optimisation routines 
and constructing line-by-line code solutions closer matching human readable formats. 

The algorithm created, Gene-Level Geometric-Push Program-Synthesis (GLGPPS), 
appeared to have much broader applications, which have been analysed as a series of 
human-lead co-evolutionary practices. The results suggested direct and indirect exposure 
of the algorithm to humans to be utilitarian but limited by the genetic operators that 
construct it. 

GLGPPS is a genetic programming algorithm that automates source-code synthesis by 
mapping a two-dimensional array of integers to object-oriented code via a scaffold-based 
templating system. In this design, each gene is translated into a complete code line, and 
genetic operators—crossover, mutation, insertion, and removal—are applied at the gene 
level to preserve modularity and syntactic coherence, with a geometric push mechanism 
modulating mutation intensity based on code indentation. 

The algorithm constructed with this thesis does not look to surpass compilation speed, 
accuracy or completion rates of existing algorithms, instead looks to offer an alternative 
algorithm for converting a genetic sequence into code. This algorithm provides 
comparable baseline (before genetic optimisations) performance to current genetic 
program synthesis models, relative language agnosticism and improved program 
comprehension.  
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1.2: Thesis contributions 
 

The contributions of this thesis can be summed up as follows: 

1. Provides a series of use-case-dependant variations of new form of human-centric 
automatic source-code generation, capable of successfully synthesizing code with 
relative language agnosticism: 
  
 Gene-Level Geometric-Push Program-Synthesis (GLGPPS),  
 Template-Based GLGPPS (TB- GLGPPS) 
 Needleman-Wunsch GLGPPS (NW- GLGPPS)  
 

2. Demonstrates GLGPPS’s ability to generate new, engaging contributions to 
professional human workflow with limited guidance and small agent population 
sizes. The findings give evidence that source code generators can be integrated, 
live, into working environments with beneficial results: 
 
 GLGPPS provides solutions with lower measured cognitive complexity 

than the current benchmark solutions for evolutionary program synthesis. 
 GLGPPS can synthesize code for multiple languages: The C# server 

environment successfully demonstrated the generation of SuperCollider 
code, demonstrating compatibility with different paradigms and 
programming languages. 

 GLGPPS does not require reflection to operate: GLGPPS does utilise 
reflection to execute natively within C# but does not require explicit 
reflection calls when writing for external environments. This algorithm, 
when written in languages which are interpreted, should also not require 
reflection, though this implementation is yet to be conducted. 

 GLGPPS can converge fast enough to be compatible with a non-specialist 
human audience when applied under suitable circumstances.  

 GLGPPS can be used as an augmentation to alongside human 
programmers, by modifying existing code in a live coding environment, 
with some limitations. 

 
3. Provides three series of experiments which assess the algorithm under different 

conditions, separated into three major case studies with significantly varied 
requirements, inputs and outputs: 
 
 Program synthesis given known input and output modelling 

demonstrating explicit fitness. 
 Evolutionary agents demonstrating implicit fitness. 
 Human collaborative source code generation in a working use-case. 

 
4. Explores genetic, automatic source-coders as an alternative to large language 

models in program synthesis challenges. 
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1.3: Thesis Structure 
 

Chapter 2 (Literature review) opens with brief definition of program synthesis and 
analysing the current dialogue of human-centric program synthesis.  

Following this is a primer for evolutionary systems and terminology with biological 
parallels are utilised to draw observational analogues against the behaviours of the 
simulated evolutionary models that are utilised in the artefact. 

A section is dedicated to exploring a chronological review of seminal developments 
within simulated evolution, constructing a timeline of papers and analysing their 
contributions towards developing the field, to contextualise the approach taken to the 
algorithm designed within this thesis.  

This chapter then analyses why evolutionary auto-coders have so far failed to create non-
trivial programs, and an analysis of contemporary algorithms with those issues in mind. 

 

Chapter 3 (Research Methodology) is a brief methodological framing, exploring 
GLGPPS as a terminological breakdown, to outline broadly what the algorithm is then 
framing the experimental approach taken in this thesis. This provides an overview as to 
why a mixed-methods approach is taken and broader utility of the research. 

 

Chapter 4 (Artefact Design and Implementation) presents the artefact and its 
functionality, starting with the core artificial intelligence system, the Gene-Level 
Geometric-Push Program-Synthesis (GLGPPS) algorithm. This chapter explore the 
design objectives, theory, and construction of this algorithm, converting a 2D genetic 
sequence into source code using a scaffolding system, and an example implementation 
into a C#.net server environment. 

This chapter then looks at the implementation of the algorithm into a server, creating the 
first genetic-programming source-code generation algorithm for runtime C# .net 
environments. This explores how the system operates and how the genetic operators are 
implemented. 

 

Chapter 5 (Evaluation) is split into three major components for three distinct series of 
experiments: 

After an analysis of the algorithm’s ability to solve trivial coding problems, with classic 
hill-climbing and a simple unit-test harness for addition, a program synthesis benchmark 
suit is explored, and a series of comprehension metrics are analysed from generated code. 

The second major series of experiments execute the artefact under different conditions 
and analyse the behaviours of an Artificial Life virtual species and the associated 
generated code of these agents in these varying configurations. These experiments 
contrast the GLGPPS algorithm with and without a Template-Based architecture, by 
observing several longitudinal experiments and exploring a limited amount of human 
interaction with these algorithms to explore how humans interact with the AI and the how 
the AI interacts with humans. 
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The final experiment modifies the algorithm to operate with music generating software, 
receiving, and outputting data across a network to allow the server to train against real-
time human feedback. This demonstrates successful human-focussed training with 
distinct evolution of sounds with positive reactions from a human audience while 
demonstrating the use of this algorithm in a time and comprehension critical task with 
human programmers. 

Chapter 6 (Conclusions) concludes the thesis, identifying specific contributions, 
findings, and limitations of each experiment. This ends with an exploration into potential 
future work, primarily outlining potential improvements to the core algorithm with an 
emphasis on reducing the impact of the natural limitations of genetic operators though 
biologically inspired methods.  
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Chapter 2. Literature Review 
 

2.1: Program Synthesis 
 

Program Synthesis is a broad term encapsulating all methods of automatically 
constructing code to solve programming problems. This thesis focuses on Genetic 
Programming (GP) approaches, but this is not the exclusive model in modern discourse. 

Program Synthesis has a range of use cases and benefits: discovering novel solutions to 
problems, helping programmers learn new languages and APIs, evaluating the impact of 
an API/language change, improving existing code and encouraging creativity in learners. 

Two major conceptual models currently dominate the program synthesis domain: models 
derived from the Genetic Programming (GP) field and models derived from the Large 
Language Model (LLM) field. In the current discourse, LLM models have demonstrated 
substantially more interest and growing success in Program Synthesis. Definitions for 
GP and LLM systems are explored in sections 2.3: Genetic Programming, Automatically 
Defined Functions & Object-Oriented Genetic programming and 2.3: Contemporary 
Algorithms. 

Sobania et al. [1] provides benchmarks to compare GP (Specifically Spector’s PushGP 
[2]) and LLM (Specifically Copilot) models, identifying the ongoing strengths and 
weaknesses of the two approaches. It broadly appears that current comparisons of GitHub 
Copilot (Large Language Model) and GP (Genetic programming) can comparably solve 
benchmark problems[1]. 

Successful solutions between GP and LLM models are not always for the same problems, 
often resolving with substantially varying length, performance and readability, but this 
analysis indicates that the two systems are currently comparable for general program 
synthesis with independent, parallel research in either field. This indicates a level of 
significance to research in this field. 

LLM’s utilise large libraries of pre-trained data and often require comparatively very 
large memory and processor overhead [1] to generate outputs (with current 
recommendations of 256GB Storage, 16GB RAM and a dedicated Neural Processing 
Unit [3]).  

GP-based systems can operate with very low overheads for similar search requirements 
in lower complexity searches [1], as they do not require substantial memory and 
processing [4], searches of limited size and functionality can complete with 
comparatively very low overhead. 

Contemporary GP models demonstrate success in finding novel solutions to problems, 
with comparable success to modern LLM models. As LLM’s operate with data sets 
derived from human constructed codebases, their solutions are more likely to derive 
outputs which closer represent stylistically human like programs. This is due to the 
grammar ‘learning’ methods of the Generative Pre-trained Transformers [5]. Conversely, 
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Grammatical Evolution generally derives grammars using a Backus–Naur form (BNF) 
[6], producing solutions which are generally less readable. 

The BNF mechanism can produce complex conjugations of existing code: it is not guided 
using human-guided use of the discipline language and is subject to generating complex 
cascades in output statements and generates very high ratios of non-functional code. 

Notably, code generated by Copilot is usually easy to read and less bloated than G3P [1]. 
The forms of BNF conventionally used for code construction in contemporary GP 
solutions produces complex, hard to read output which does not follow modern coding 
conventions for most languages. As BNF can contain rules which produce single line 
commands which are code-length-unconstrained or follow construction methods which 
may recursively construct within a single line, the algorithm is subject to generate outputs 
which do not support good conventions for human readability.  

To demonstrate this, Sobania demonstrates a pair of example outputs for a ‘scrabble score’ 
benchmark of GPT (Figure 1) and GP (Figure 2) algorithms – “It is noticeable that 
GitHub Copilot’s code is much better structured than the code generated by the 
grammar-guided GP, which is hard to read and bloated. However, it can be assumed 
that GitHub Copilot has knowledge about the Scrabble scores of individual letters due 
to the pre-training of its underlying model.” 

 

 
Figure 1: A code example produced by GitHub Copilot for “SCRABBLE SCORE” benchmark, 

image source: Sobania et al. [1] 
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Figure 2: A code example produced by grammar-guided GP for “SCRABBLE SCORE” benchmark, 

image source: Sobania et al. [1] 
 

This introduces a clear need for change in the construction paradigm for genetic systems 
for human readable coding conventions in both synchronous and asynchronous systems. 

Asynchronous programs run until completion with no further human input. A 
specification is set before start-up and the program runs autonomously. A common use 
of asynchronous systems are in pre-defined input and outputs, more commonly addressed 
in GP systems and demonstrated in the current benchmarking framework for program 
synthesis [7]. 

Synchronous, “Human-in-the-loop” or “interactive” programs, allow human interaction 
to guide the algorithm at runtime with continuous human feedback. They are broad in 
application and method, generally updating requirements or utilising human preference 
against example outputs. 

 

2.2: Human-Centric Program Synthesis 
 

Crichton [8] identifies a vision for program synthesis, advocating a shift in program 
synthesis research from traditional input/output example–based methods toward a 
human-centric paradigm. The argument is that synthesis tools should not merely be 
viewed as mechanisms for generating code from explicit examples but should instead 
function as interactive aids that support programmers. The paper proposes a synthesis 
framework that emphasizes usability, interpretability, and integration with everyday 
programming workflows, bridging the gap between automated synthesis and practical 
software development challenges. 

Output code from program synthesis algorithms, especially derived using genetic 
operators, are generally designed to solve a problem, not to be understood by humans. 
This is useful in a range of scenarios where a human does not need to know, or the 
problem cannot be derived by a programmer in a similar time frame, given time for 
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comprehension, but is rarely useful for a programmer. Programmers classically spend 
“58 percent of their time on program comprehension” [9] without program synthesis. 
The ramifications of this are extended time spent inspecting, comprehending and 
modifying complex solutions to coding problems [10], a significant barrier for 
contemporary Genetic source code synthesis algorithms. 

 

Automatically Measured Maintainability 
 

One approach to measuring conceptual comprehension in code is to analyse the 
complexity. 

A common measure, seen in some example benchmarks of program synthesis [1], is the 
cyclomatic complexity of an algorithm. This is a measure of the amount of decision logic 
in a source code function [11]. While this does not directly assess human legibility or 
conceptual understanding of generated code, it does provide a measure of complexity 
which contributes to human readability. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐸𝐸 −  𝑁𝑁 +  2𝑃𝑃 

𝐸𝐸 = the number of edges in the control flow graph 
𝑁𝑁 = the number of nodes in the control flow graph 
𝑃𝑃 = the number of connected components 

 
Halstead Volume [12] is another metric, which measures the number of distinct operators 
against number of occurrences of operators.  

Both Halstead Volume (HV), Lines of Code (LoC) and cyclomatic complexity (CC) can 
be used to calculate a Maintainability Index (MI) [13]. The maintainability index utilised 
in this thesis is the Visual Studio Maintainability index range [14], which uses the 
formula: 

𝑀𝑀𝑀𝑀 =  𝑀𝑀𝑀𝑀𝑀𝑀�0,
(171 −   5.20 ∗ ln(𝐻𝐻𝐻𝐻) −   0.23 ∗  (𝐶𝐶𝐶𝐶) −  16.20 ∗ ln(𝐿𝐿𝐿𝐿𝐿𝐿)) ∗ 100

171
� 

 

This maps into the following ranges: 

Highly Maintainable =>  20 
Moderately Maintainable =>  10 && <  20 
Difficult to Maintain < 10 

 

With an outline of program synthesis and the identification of a lack of higher 
interpretability, human-centric program synthesis algorithms which derive from genetic 
operators, we can explore a novel framework for creating an alternative algorithm. 
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2.3: Simulated Genetic Systems 
 

This project explores co-evolutionary emergences with humans: a participant may adapt 
to changes in the environment and perceptual changes in the behaviour of virtual agents. 
Human interactors may also modify the environment in which the species is evolving, 
creating a feedback loop incorporating the evolutionary process of the simulated agents, 
in which participants observe changes in behaviour and the impact of their own 
modifications and adapt over time to the behavioural changes from the simulated species. 

The process of developing a biologically inspired algorithm draws from a theoretical 
grounding in biological study. This section selectively explores contextually relevant 
simulated biological processes to construct an argument for the inclusion and 
development of evolutionary techniques from biological genetic systems, as a primer for 
a chronological review of simulated genetic systems. 

It is perhaps useful to remember that the limitations of biology and the limitations of 
software are not the same. We cannot necessarily anticipate a direct correlation between 
natural and simulated systems. We can however anticipate some level of correlation 
between two mathematical models exploring loosely correlated search spaces. We can 
identify mathematical theory underpinning some evolutionary systems which correlate 
with some of the simulated evolutionary systems this project explores. 

As this project utilises genetic systems which express both a genotype and a phenotype 
without explicit non-coding pruning as its core evolutionary process, we will be seeing 
some similarities in the patterns of the genetic sequences and in the emergence of 
construction methodologies. In this section, we explore both the biological and simulated 
underpinnings of these crossovers and emergences in the applicable contexts of an 
evolutionary model which utilises a Genetic Algorithm (GA) as its core method for 
evolutionary propagation. 

This section explores these concepts as well as defining some of the key relevant 
terminologies utilised in the field of genetic algorithms, as a primer towards Section 2.3: 
and to draw parallels in genetic observations throughout the experiments. 

 

Non-Coding Sequence and Loss of Function Mutation 
 

Non-coding regions in genetic sequences, frequently referred to as ‘junk DNA’, is a term 
used to classify regions of genetic code which do not directly encode protein sequences. 
The latter terminology comes from the assumption that non-coding regions served no 
function, though explicit utility has since been demonstrated in these sequences. [15], 
[16] 

While there have been arguments in favour of the permittance of high proportions of non-
coding regions in simulated genetic systems [17], [18], most traditional systems using 
the classic genetic algorithm [19] crossover approach tend to collect very large quantities 
of  non-coding values. These values do not frequently serve to benefit a species and are 
often detrimental to the system due to the increasing memory required to hold and 
execute these programs. This leads to negative association of non-coding sequences in 
simulated evolution models, as program efficiency is generally lost as size increases, 
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often from non-coding regions, generally referred to as ‘bloat’ [20]. In contrast, in 
biology, the percentage of gene sequences that are non-coding can vary wildly, though 
traditionally makes up a very large proportion of the genetic sequence [21].  

Non-coding regions can hold value in the evolutionary processes for variable scale 
genetic systems, both simulated and real. These regions are often used as: buffer regions 
to change the mutation likelihood of high value regions of the gene sequence, can provide 
a basis for polymorphism which may lead to speciation and can retain functionality from 
ancestral species as pseudogenes [22]. 

‘Loss-of-function’, as the name suggests, is a mutation which disables or reduces the 
functionality of a gene or coding region, leading to the loss of functionality of that region. 
This may occur for a range of reasons, but most identifiably from a single allele mutation 
which disables the entire gene. 

A subset of non-coding regions are pseudogenes which have been retained after a loss-
of-function mutation. These regions, no longer serving towards evolutionary stability, 
can undergo silent mutation and may be re-activated through further mutation, to restore 
fossil functionality in the phenotype of the species or introduce new functionality. [23] 

 

Homology and Convergence 
 

Homology is the similarity of species due to a shared genetic ancestry, where identifiable 
traits shared between separate species occur due to the species sharing a common 
ancestor  where those traits are due to common genetics [24]. 

This is notably independent to convergent evolution [25], [26] in which multiple species 
will evolve a similar phenotype even though they do not share a common ancestor. In 
experiments with comparatively short search spaces, convergent and homologous species 
will only be identifiable by a direct search of agents’ ancestry or by analysis of non-
coding genetic sequences. 

In analysing the genes of a species, we can identify homologous sequences, where agents 
share sequences of their genetics between species, these sequences are orthologous. As 
this project looks to focus on the behavioural evolution of agents (opposed to 
morphological evolution), analysis of orthologous genetics will be the primary 
identification of speciation events. 

A fully converged output in Genetic Algorithm (GA)s is a species who have entirely 
unified their genome to an identical copy between every agent, where convergence is the 
approach towards this common sequence. Notably, the point of convergence is not 
necessarily the global optima [26], though methods such as elitism can move agents 
towards their local optima, which may include the global optima. 

Traditionally, in GA’s directly deriving from John Holland’s classical definition [19], we 
will arrive at a small number of populations of very similar, though not necessarily 
identical agents, regardless of how many agents we initialise with. This is for a range of 
reasons, mostly relating to the inability of the traditional algorithm to speciate, not 
utilising an environment which encourages divergent evolution or applying a 
methodology for aggregation-based crossover models (such as herding [27]) , which may 
drift across a global search space rather than sample into a local search space.  
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Genetic Drift 
 

This is a statistical process where, by selecting a small random sample population from 
a large population with randomised alleles, there is a high likelihood of deriving a sample 
which is not directly representative of the original population. This inconsistency usually 
either gives lower proportions of certain populations than the source, or only has select 
populations [28], creating a convergence towards the average or mode of the sample, 
distinct from the original population. 

As the new sample may have very small numbers of certain alleles from the original 
population, the less frequent may be rapidly lost within the gene pool and a new, 
dominant species may arise. This process can allow a species to either generate a 
monoculture or found a new sub-species. 

Due to one of the proposed experiments in this thesis involving geographically dependant 
breeding, a system which utilises random mutation while operating under complex and 
varying external pressures, we can expect to see regions and periods of high and low 
population densities alongside geographically distributed populations, which will lead to 
genetic drift. This may occur from both the founder and bottleneck effects [29] as small 
monoculture populations, for example a single breeding pair, may move into their own 
geographic region and reproduce or, as the population decreases to a critical state, the 
population may become so low that random distributions of genetics are lost. 

 

Gene Insertion, removal, and Amplification 
 

The project will explore the simulated application of sequence length modifying insertion 
and removal. This is the addition or removal of genes in a genetic sequence and directly 
modifies the order of genes in a sequence. This mirrors biological systems of similar 
function [30], where insertion mutation occurs, usually because of incorrect crossover 
processes occurring [31], where a section from one chromosome is injected into the 
incorrect corresponding chromosome, inserting a section of the prior chromosome into 
the new chromosome. 

This process can drive mutation, directly modifying the length and structure of 
chromosomes within the genetic sequence. This makes this process critical for variable 
gene-length dependant search space mutation. 

Notably, this process can cause gene amplification [32] – the process of gene duplication, 
beyond just the initial crossover misalignment. A species which undergoes insertion and 
removal processes may produce agents with chromosomes of varying length. This 
varying length causes the point of crossover to decide between a longer and a shorter 
genetic sequence, which can cause a duplication of genes due to the alignment of a gene 
in one parent being different from the other, causing the same sequence to be inserted 
twice into a child [33]. 

While there are other methods for insertion and removal of a genome [34], [35], they are 
not applicable to this study. 
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Punctuated Equilibrium and Criticality 
 

In adaptive models, periods [36] or architectures [37] of criticality frequently form the 
most significant adaptions from longitudinal studies, arguably to the extent that 
independently, more linear Darwinian mechanics may be relatively insubstantial. 

Punctuated equilibrium is a modification of Darwinian evolution, in which the 
gradualistic evolutionary process is punctuated by a period of heightened criticality, often 
a point where the population dramatically reduces in size, becomes isolated or by other 
means undergoes a period of rapid mutation. This produces a short burst of evolution 
over a comparatively small time span and, following fossil records, arguably constitutes 
the majority of the evolutionary process in biological history. 

In more modern studies of explicit genetic deviations in biological systems, we can see 
the major changes in morphological phenotype derived from minor changes in genetic 
sequences [38]. These large-effect mutations are driven by short alterations of the 
genotype, which provides a basis for sudden changes in taxa of species, which in turn 
can create a speciation event – where species deviate enough to become distinct. 

A study into the application of punctuated equilibria for artificial life can be seen by 
Jonnal and Chemero [39], producing models which suggested that artificially induced 
periods of punctuation consistently improved overall fitness of the measured agents. This 
model uses a neural network set to explore a simple environment, a grid, which either 
gains or detriments the agents score depending on the tile, where the environment would 
consist of a randomly distributed set of tiles with a consistent number of tiles of each 
type between generations. This uses a finite set of weights which are used to vary their 
criticality each generation by a random rate. The results indicated a consistent 
improvement for all experiments against a control sample which did not utilise explicit 
interjection of punctuation. 

Furthermore, a critical state may be formed by the presence of co-evolution, where 
“sustained fitness is optimised when landscape ruggedness relative to couplings between 
landscapes is tuned such that Nash equilibria [40], [41] just tenuously form across the 
ecosystem. In this poised state, co-evolutionary avalanches appear to propagate on all 
length scales in a power-law distribution. Such avalanches may be related to distribution 
of small and large extinction events in the record” [42]. 

While punctuation could be expected to occur to some extent naturally in dynamic 
systems at least in terms of variable evolutionary rate due to more complex relationships 
with a species environment [43], using a model which dynamically modifies the mutation 
ratios of an artificial species with human agents may allow a more robust adaptation to 
human interaction. This thesis does not directly explore the utilisation of explicitly 
enforced mutation ratio modification during runtime, but the artefact and associated 
implementation is compatible with this approach and is discussed in Future Work: 
Artificially Enforced Punctuated Equilibrium. 

Punctuated equilibria may occur due to human interaction creating sudden, severe 
changes to species ecological niche, forcing scenarios which may lead to either sudden 
evolutionary adaption or population die-off. This may, for example, come from a human 
placing harmful objects in a geographic region a species has evolved to explicitly utilise. 
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Co-evolution 
 

Co-evolution is a process under which multiple species exert selection pressures on each 
other, to add or relieve environmental selection pressures. For the purposes of this paper, 
we will be analysing the impact of co-evolution between evolutionary species emergent 
from speciation, explicit predation, and human-AL co-evolution. 

The process of co-evolution will modify the search space, altering the local optima of 
species involved over time and frequently encouraging either further adaption into an 
ecological niche or stimulating the diversification of species. Co-evolution is a primary 
driver for speciation [44]. 

Co-evolution as an evolutionary pressure in Artificial Life models is classically 
demonstrated through predation, demonstrating predator and prey dynamics and the 
subsequent Lotka-Volterra equation [45], [46]: a generalised formula for predator-prey 
population dynamics, identifying the growth and collapse of predator and prey species 
over time. When applied to evolutionary models, this variance in population creates low 
population regions, which permit entry points for genetic drift in both species. The 
evolutionary process here tends to move the local optima of the prey species towards 
predation mitigation strategies, such as increased birth rates, protective morphological 
changes, or adaption in behavioural strategies while changing the local optima of the 
predator species towards more effective predation strategies and morphologies. 

Parasitism is also a form of co-evolution, where one species is explicitly dependant on 
another to the detriment of its host. This constructs a similar arms race to predation, 
though often produces much more nuanced outcomes, as the parasite is often dependant 
on its host’s survival, producing a generally unidirectional dependence [47]. 

There are also a range of mutualistic and relatively mutualistic interactions, for example 
the sharing of food resources or the dynamics of multi-species operations [48]. These 
may be subtle but still act as a driver toward the development of divergent niche 
exploration. As an example, the behaviour of one species may cause the geographic 
optima for another species to shift. 

This co-evolution is a form of collaborative practice between the interactors and the 
species itself. 

  



 

23 
 

 

Sequence alignment  
 

Sequence Alignment is “The procedure of comparing two (pair-wise alignment) DNA or 
protein sequences by searching for a series of individual characters or character patterns 
that are in the same order in the sequences.” [49] 

Sequence alignment classically expresses into two general pair-wise alignment 
strategies: global and local alignment (Figure 3).  

Global alignment identifies the optimal alignment between both strings, including the 
removal or addition of alleles, to preserve the highest number of duplicate values between 
two strings for the entire gene length. Global alignment is subject to misaligning coding 
regions of a sequence so that a higher ratio of total alignment is matched. 

Local alignment focuses on identifying a region which identifies the highest alignment 
similarity between the two genes but only carries forward those regions. 

 

For the purposes of this thesis, only Global alignment, using a modified implementation 
of Needleman-Wunsch, is assessed. As global alignment is applied at a gene-by-gene 
level for genes of limited length, sub-sets of alignment are not yet explored. 

 

 
Figure 3: Global and local alignment distinction. Source: Mout [49] 

 

 

Needleman-Wunsch  
 

The classic global sequence alignment algorithm, Needleman-Wunsch [50], finds the 
longest common subsequence (LCS) that maximizes a scoring function. The LCS may 
contain gaps (insertions or deletions) to achieve the best alignment.  

Complexity approximation of 𝑂𝑂(𝑛𝑛𝑛𝑛) for both time and memory, where 𝑛𝑛 and 𝑚𝑚 are the 
lengths of the analysed sequences. Optimisations of this algorithm exist, but are not 
implemented in this thesis [51]. 
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The algorithm defines a score for matches, deletions and insertions. This value is used as 
a multiplier in determining a match score, and therefore the output strings. As an example, 
a value may be set to zero and have no impact on the calculation. 

This algorithm constructs a 2D matrix of length (string 𝑆𝑆 length+1, string 𝑇𝑇 length+1), a 
representation of characters in the string across each axis. This matrix is populated by 
values derived according to the distance between aligned values according set scores for 
the following scenarios: 

 

For each cell (𝑀𝑀[𝑖𝑖][𝑗𝑗]), compute the score by considering three possibilities: 

Match          :  (𝑀𝑀[𝑖𝑖][𝑗𝑗]  =  𝑀𝑀[𝑖𝑖 − 1][𝑗𝑗 − 1]  +  𝑠𝑠(𝑆𝑆_𝑖𝑖,𝑇𝑇_𝑗𝑗)) 

Gap in sequence (S):  (𝑀𝑀[𝑖𝑖][𝑗𝑗]  =  𝑀𝑀[𝑖𝑖 − 1][𝑗𝑗]  +  𝑑𝑑) 

Gap in sequence (T):  (𝑀𝑀[𝑖𝑖][𝑗𝑗]  =  𝑀𝑀[𝑖𝑖][𝑗𝑗 − 1]  +  𝑑𝑑) 

 

This algorithm is then traced back from the bottom right of the matrix to the top left, 
following the highest score of moves at each cell traversed, moving up, left or diagonally 
left and up. The result is an alignment score and a pair of strings who represent the 
optimal alignment. 

This implementation is explored as a method for error correction and genetic stability in 
implicit fitness tests in this thesis. Notably, this algorithm is not common practice in 
genetic algorithms as research classically focuses on phenotypical outputs or bitwise 
comparators. 
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2.4: A Chronological Review of Developments Towards Gene-
Level Geometric-Push Program-Synthesis 

 

The following section explores a chronological timeline of major seminal developments 
of Artificial Intelligence systems as part of a literature review towards a new algorithm, 
following the structure described in Figure 4. We explore this timeline as GLGPPS was 
not conceived as a direct iteration of a single algorithm but constructs from range of 
genetic programming literature. 

Due to the rapid variation in potential environments brought by human interactors 
alongside the expectancy of humans to see rapid alterations in behaviour, this concept 
brings an emphasis on developing an AI controller capable of highly adaptive behaviour. 

This has led to the development of a novel evolutionary algorithm, to meet these 
requirements. Taking concepts of artificial life towards more biologically inspired 
genetic selection methods while moving towards an automatic programmer, we arrive at 
a Gene-Level Geometric-Push Program-Synthesis (GLGPPS) algorithm, which builds on 
an existing history of constituent theories, which this section explores. 

This follows a trend of gradual, continuous improvement of evolutionary systems; 
however, we have not yet developed a computer program capable of automatically 
generating high level code to solve arbitrary programming tasks, using evolutionary 
algorithms. Genetic automatic programmers have been a field of research since 1958 but 
have continuously failed to solve nontrivial coding challenges. This implies an inherent 
limitation of traditional evolutionary mechanisms being bound to exponential processing 
requirements against a linear growth in output complexity, leading to an argument against 
the use of genetic operators for this context, which is covered within this section.  
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Figure 4: Timeline of seminal development towards a Gene-Level Geometric-Push Program-Synthesis 

Algorithm 
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Simulated Evolution, Evolutionary Programming & Genetic Algorithms  
 

In this section, we explore the first recorded simulations of evolution (Figure 5), as a 
progression of developments building towards the first genetic algorithms.  

As these early algorithms mostly fell into exploratory simulation with vague direction, 
they fall under the broader term ‘Simulated Evolution’, referring to any attempt to 
simulate the modification of a phenotype over multiple generations, encompassing 
genetic algorithms, Genetic programming, Evolution Strategies, and some variants of 
Artificial Life. Within this, ‘Evolutionary Programming’ is a term for any algorithm 
which utilises simulated evolution to automatically develop code. 

 

 
Figure 5: Timeline of seminal developments, simulated evolution to genetic algorithms 

 

The late 1950s saw the first attempts to simulate evolution; this phase of development 
saw researchers independently creating the first evolutionary software methods [52]. This 
period has been well researched and documented by Fogel [53], claiming the idea of 
simulated evolution may have arisen independently, 10 times over two decades. 

Contrary to this, John Holland, who claims the development of the original evolutionary 
algorithm, argues this period “fared poorly because they followed the emphasis in 
biological texts of the time and relied on mutation rather than mating to generate new 
gene combinations” [19], though this broad dismissal is perhaps a symptom of the lack 
of awareness of the research undertaken in this period. 

The first of these early simulations of evolutionarily inspired algorithms came from 
Barricelli, in “Symbiogenetic Evolution Processes Realized by Artificial Methods” [54], 
[55], demonstrates the earliest recorded evolutionary and Artificial Life simulation [56], 
though the theory for self-replicating automata was well founded by this point [57]. This 
model demonstrated a study of emergent patterns in deterministic cellular automata, 
using a matrix of values which vary each generation following a series of rules, in a 
similar format to the later Conway’s Game of Life [58]. Barricelli’s simulation took an 
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initial population as an array of bits and applied a simple ruleset, updating or ‘evolving’ 
in defined time-steps, flipping each bit on the following step depending on the state of 
the surrounding bits. 

This produced the first simulated example of evolutionary emergence. Emergence [59], 
[60], [61] of complex systems (behaviours, patterns) from the interaction of agents with 
behaviours which do not exhibit those systems independently. “Emergence occurs in 
systems which are generated… the whole is more than the sum of the parts in these 
generated systems. The interactions between the parts are nonlinear, so the overall 
behaviour cannot be obtained by summarising the behaviours of the isolated 
components.” [62] 

Following parallel research into genetic theory at the time, Fraser, in Simulation of 
Genetic Systems by Automatic Digital Computers I [63], [64] provides the first 
documented example of a simulation of evolution though the breeding of two simulated 
gametes using a genetic sequence, represented as a binary string. A phenotypic value was 
derived from a function run against these strings, as a basis for selection. 

This paper took inspiration from the Monte Carlo method [65], [66], using random 
seeding and random sampling over a complex search space formed from many genes 
through genetic recombination, and gametes in mating selection. This paper also 
introduces mutation, initially labelled as “Environmental Effects”, as a random deviation 
of the genetic sequence, independent of crossover. This paper also discussed selection, 
though a fitness function is not clear. 

At this point, the necessary mechanisms which would eventually be labelled “Genetic 
Algorithms” were present, particularly with Fraser’s expanded exploration through the 
1960s [64]. Fraser’s work during this period, however, appears to have been “largely 
ignored by the evolutionary computation community” [67]. 

Independent of this research, Friedberg, in “A Learning Machine: Part I” [68], developed 
the first method for evolving working machine code using pointer control. This algorithm 
relies on a form of guided mutation to evolve, determining the likelihood each gene is 
detrimental before applying mutation to individual genes. 

This system works by moving through an array of 64 pointers which direct to operations, 
a finite number of pre-assigned operation codes in memory. When called consecutively, 
these operations will run as a program by pointing at operation instructions in memory 
and assigning them with values. 

This algorithm includes a form of ‘GoTo’ statement, an operation which redirects the 
current position of the main operation pointer. This is shown to produce some statements 
which do not terminate or run for long durations. This in turn led to the introduction of a 
timer, automatically terminating the program after a set interval. This simple addition can 
enable the search space to explore recursion and loops without terminating the search 
itself. 

The evolutionary process in this method was a simple form of mutation, modifying a 
random value or instruction periodically. The algorithm extends this method with a 
credit-assignment system, analysing the use of every operation in an agent, using the 
current fitness of the agent against its previous iterations, to determine if each operation 
appears to beneficial or detrimental, either disabling or swapping the operation if it is 
shown to cause reduced performance over time. A selective bias is also introduced in this 
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system, giving both an improved fitness score for agents with a lower number of 
operations and a simple analysis for the successful completion rate of agents.  

Friedberg’s model was criticised by Minsky [69] in 1961, arguing Artificial Intelligence 
models at that time as “An important example of comparative failure” since “The 
machine did learn to solve some extremely simple problems. But it took of the order of 
1000 times longer than pure chance would expect.”. This criticism, while an 
exaggeration[70], identifies the core issue of the evolutionary approach taken in this 
model, stemming from the single-target, re-enforcement-mutation approach, the “Mesa 
Phenomena”. This is a form of local-maxima entrapment for hill climbing procedures, 
“in which a small change in a parameter usually leads to a small change in performance 
or to a large change in performance” and suggests the use of meiosis and genetic 
crossover as a system to reduce the significance of this entrapment.  

A Learning Machine: Part II [71], published in 1959 attempted to improve the 
performance of this first model. The most significant improvement it delivered was the 
separation of the problem into individual sub-programs. This appears to effectively form 
a simple hierarchy, having several base nodes to consistently split significant procedures, 
effectively forming a simple 2-layer tree. This paper was also reviewed in the same article 
by Minsky, but it appears that the insight driven in Friedberg’s second paper has 
remained overshadowed by the criticism given by Minsky of the first. 

Simultaneously, Bremermann in “The Evolution of Intelligence” [72], began work into 
a model of mutation-based search space exploration. This introduced the ‘OneMax’ 
algorithm, an assessment of the fitness of an agent by comparing the number of correctly 
allocated bits in a string and brought further insight into the mathematical limitations of 
this algorithm and the probability of favourable mutations. This heuristic method allowed 
a comparison of agents and a basis for generational optimisation. 

Bremermann later published Optimization Through Evolution and Recombination [73], 
which took into account Minsky’s comments on Friedberg’s work. This produced, with 
results, a new model which took a population of individual agents and discussed a model 
which could recombine their components between the population, “by 1962 there was 
nothing in Bremermann’s algorithm that would distinguish it from what later became 
known as ‘genetic algorithms’.”[74]  

A notable addition to this timeline is Fogel’s work in “Artificial Intelligence Through 
Simulated Evolution” [75], demonstrating a form of evolutionary regression, in an 
approach which modifies parameters within a fixed-structure, finite state machine. This 
method utilised existing algorithms, replacing hard-coded variables with evolvable 
variables, to some success- but only towards simple parameter optimisation. 

Holland expanded this in 1962 in “Outline for a Logical Theory of Adaptive Systems” 
[76], looking to construct an analysis of the functionality in existing evolutionary 
algorithms, constructing a theoretical basis for his later work into genetic algorithms, 
rather than providing a novel algorithm. This paper acknowledges Minsky’s analysis [69], 
though in no great detail and gives no clear reference to the works of Friedberg or 
Bremermann. 

Holland later coined the term ‘Genetic Algorithm’, in 1975, with the seminal book 
“Adaptation in Natural and Artificial Systems” [77]. This text explores the mathematical 
theory, with proofs, behind evolutionary algorithms, introducing his own theoretical 
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framework to this understanding and creating a unified, if not novel, approach to 
Simulated Evolution in Genetic Algorithms, which spurred the development of the field. 

Holland’s Genetic Algorithm is a heuristic search algorithm which modifies a 
representation of possible solutions, or ‘agents’, over a series of generations, exploring a 
search space to locate higher fitness solutions, emulating some of the core principles of 
sexual evolution. This algorithm comprises of the following four steps: 

 

1: Generate a random population of genomes: a sequence of variables (or ‘alleles’) which 
impact the functionality of the agent and/or its environment, when implemented in their 
run-time environment. Generally, every agent in a simulation has its own genome, held 
independently of all other agents. 

2: Assess the fitness of the agents: a score is applied to each candidate solution, where 
each agent is given an input and its resulting output is used to derive a quantitative 
measure according to the height achieved within agent’s fitness landscape [78]. This may 
be Explicit or Implicit, either directly deriving a fitness value, and using this value to 
determine breeding selection, or utilising an environment in which more fit agents are 
less likely to be eliminated or more likely to breed successfully. A common example of 
Implicit fitness is in continuous artificial life simulations, where the survivability and 
agent’s adaption to ecological niches acts as a fitness and selection determinant. 

3: Breeding between two agents: the next generation of agents are generated through 
recombination of the previous generation’s chromosomes. This process begins with 
selection, identifying a pair of agents to act as parents, with a higher selection bias 
towards those with a higher fitness. From the chromosomes of the parents, a new 
chromosome is generated, using some form of genetic crossover. Each allele in the new 
chromosome has a probability of mutating, where a mutation will modify a value to a 
random new value. 

4: Removal of agents: agents, with a bias towards those with a lower fitness, are removed 
from the simulation. This reduces genetic stagnation and prevents the exponential growth 
of processing requirements. Following this step is a loop back to step 2 unless a condition 
for termination is met. 

 

Holland’s Genetic Algorithm and its explosive popularity set the mechanism for a broad 
range of derivative applications, including evolutionary programming strategies. 
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Genetic Programming, Automatically Defined Functions & Object-Oriented 
Genetic programming  
 

Combining the concepts of Evolutionary Programming and Genetic Algorithms, we 
arrive at Genetic Programming, explored in this section (Figure 6). Genetic Programming 
is an extension of John Holland’s Genetic Algorithm architecture, when applied to breed 
populations of potential software solutions, through correlating the agent’s alleles with a 
set of pre-defined functions. The utility of complete program synthesis is explained by 
Koza:  

“The simple reality is that if we are interested in getting computers to solve 
problems without being explicitly programmed, the structures that we really need are 
computer programs. Computer programs offer the flexibility to perform operations in a 
hierarchical way, perform alternative computations conditioned on the outcome of 
intermediate calculations, perform iterations and recursions, perform computations on 
variables of many different types, and define intermediate values and subprograms so 
that they can be subsequently reused.” John Koza [79] 

 

 
Figure 6: Timeline of seminal developments in genetic programming 

 

Most algorithms within this field revolve around the manipulation of ‘abstract syntax 
trees’ (Figure 7), a node-based tree representation of a program’s syntax, separating 
functions and variables as branches and leaves. This syntactic awareness also changes 
the way recombination and mutation function, as a linear genetic sequence is not 
interpreted linearly, and the transposition of a branch may modify the functionality of the 
generated program while maintaining the core behaviour of the agent. Traditionally, in 
this structure, a leaf would represent a value or variable and a node would represent an 
operator or function call. 
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Figure 7: Abstract syntax tree for: Max(x + x, x + 3y)  

Source: Adapted from [80] 

 

An element within the representation of the tree may be mutated, swapping values 
randomly or branches for alternative valid syntax abstracts (for example, mutating a plus 
into a divide command). A type of mutation specific to tree interpretations may also be 
applied through the addition of a new sub-tree, where a new, randomly generated 
syntactic tree structure is appended in place of the leaf node of the child (Figure 8). 

 
Figure 8: Example of Sub-tree mutation.  

Source: Adapted from [80] 

 

The first of this class of algorithm was developed by Forsyth, with BEAGLE [81] 
(Biological Evolutionary Algorithm Generating Logical Expressions), the first working 
implementation of evolvable programs using syntax trees. This initial paper produced 
little impact within the field [82], yet pioneered many of the fundamental mechanics. Of 
particular note is the use of syntax-aware mutation and recombination on variable-length, 
tree-structured genotypes, as discussed above, and a simple form of optimisation, in the 
automatic removal of redundant code (code with no functional impact, e.g. double 
negatives). 

BEAGLE consisted of two programs, a breeding program, and an execution program. 
The breeding program did not use a classic genetic algorithm at its core, though still 
evolved executable solutions through sub-tree recombination and mutation, this method 
retains the highest scoring quarter of agents form the previous generation and hybridises, 
with mutation, the remaining agents to construct the following generation. The execution 
program ran the solution formed by the breeding program and gave the output its 
associated score, to be utilised by the breeder. 
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This algorithm, as with most classical Evolutionary Programming systems, produced 
logical expressions rather than Turing complete programs; it is not capable of realising 
all possible algorithms [83]. This limitation restricts the potential output of these systems, 
as they cannot explore the entire search space of algorithms – it is incapable of acting as 
a complete general problem solver. 

Cramer [84] independently produced two algorithms: in his first experiment, evolution 
occurred over a linear integer-value genetic sequence, including crossover and mutation. 
Here, an integer is a representation of (a pointer to) a syntactic statement or variable, 
where programs were formed from linking, linearly, a series of statements together 
according to their position in an ordered memory space, allowing evolution to an array 
of pointers representing a program to generate novel program solutions. Cramer 
identified several issues with this approach, most significantly, that slight mutations or 
alterations to the length of a sequence would eliminate most of the algorithm’s beneficial 
features at breed time.  

Cramer’s second simulation looked to mitigate the issues raised by this evolutionary 
approach, stepping away from classic genetic algorithms by again looking towards 
syntax tree structures. This included the exploration of sub-tree crossover, selecting a 
branch of one agents’ tree and injecting it into the crossover point of another to create a 
new algorithm. The mutation of agents was limited to the leaves of the syntax trees, due 
to early experiments indicating that mutations to low depth nodes in syntax trees are 
generally more disruptive than beneficial.  

Koza produced a patent [85] which appears to have rediscovered Cramer’s second 
algorithm. Here, Koza makes an argument for the binary level representation of the 
genetic algorithm, in support of its benefits to the exploration of nonlinear space, 
however, he does not explicitly outline a specific crossover or data storage mechanism, 
making no clear explicit separation between this algorithm and Cramer’s revised 
algorithm, retaining those genetic crossover and mutation mechanisms described by 
Cramer. 

LISP is used due to the syntactical representations of S-expressions which can be 
interpreted as Abstract Syntax Trees (ASTs) with distinct leaf and internal node objects 
with symbolic representation. While this approach has proved fruitful in the automatic 
generation of functional code, it has also moved the general direction of evolutionary 
programming away from the object-oriented paradigm or human facing syntax and 
toward the functional representation solution space. 

Koza then coined the term ‘Genetic Programming’ in his book of the same name [79]; 
this book took a similar role in the AI community to that of John Holland’s book for 
Genetic Algorithms, clearly exploring and articulating the mathematical proofs and 
applications of the algorithm with a series of seminal works which popularised the field. 
This was the first book in a series, the following entries [86], [87], [88] highlighting a 
series of seminal developments within the specialism. 

Koza and Rice then expanded the Genetic Programming algorithm with ‘Automatically 
Defined Functions’ [86], [89], [90], introducing a new method which calls one evolved 
function (subroutine) from another evolved function, both of which were automatically 
evolved through Genetic Programming. This approach allows the independent evolution 
of multiple distinct functions with a reduced risk of the sudden outbreeding of major 
elements of the genome, a similar evolutionary system to chromosomes within a genome. 
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Koza again relies on LISP for this mechanism, as it allows dynamic definition of 
subroutines which may be called within the same program.  

Expanding on this algorithm, Bruce, in his doctoral thesis, developed Object Oriented 
Genetic Programming [91], [92], moving away from functional and procedural 
programming paradigms. This took the same syntactic tree representation and 
evolutionary approach as seen in the previous GP interpretations. Notably, William 
Langdon simultaneously and independently produced a similar algorithm [93] to evolve 
abstract data types. 

Object Oriented Programming, introduced in 1961 with the Simula languages [94], is a 
software design paradigm which modifies data structures, the objects, using functions – 
mathematical transformations and manipulations of the objects [95]. This approach 
allows for improved modularity and re-use of software, easier utilisation of recursion and 
reduced complexity of common data modification functions. Simon Lucas gives a 
thorough exploration into the use of the object oriented paradigm and its benefits in 
Genetic Programming [96], summarising the exploration with: “we strongly encourage 
future applications of GP to avoid the use of functional representation, wherever possible, 
and operate on an OO space” [97], a stance which has not been universally adopted. 

In an attempt to separate the phenotype and genotype, Paterson developed GADS 
(Genetic Algorithm for Developing Software) [98], [99], which, using Backus Naur 
Form (BNF), a grammar which is utilised to create a generic phenotype template, the 
algorithm was expanded to allow the output to be written in the language of choice, rather 
than being limited to hard coded frameworks for dynamically generated logical 
expression compatible languages.  

BNF was developed by John Backus in the development of ALGOL [6], a context-free 
Computational Grammar, a meta-syntax abstraction or representative model, which 
allows a consistent design for mapping program calls to a standardised format. This 
generalised representation allows for evolution to occur in a consistent language agnostic 
data format before being passed to pre-processor which can compile code to match the 
syntax of the output language. 

GADS looked to generate C++ files, requiring a perl pre-processor to generate valid C++ 
data structures. The syntax used in this algorithm was pre-defined as a list of valid code, 
which was compiled together using a C++ Genetic Algorithm, using ASTs. This method 
utilised integers rather than binary, where each value in a genetic sequence would refer 
to the position of a line of BNF code in the grammar list, which would then be converted 
to C++. 

To expand the capability of GP to multiple data types in a single solution, Spector 
developed PushGP [2], [100], an extension of the Push programming language, for GP. 
This algorithm utilises a stack architecture – where objects may be added to the top of an 
existing data stack with a push or removed with a pop. This push-pop stack constructs 
code as a string, which can handle multiple different data types, including code itself, by 
utilising multiple different stacks for each data type. 

This algorithm works by progressing through an ‘execute’ stack, running a series of 
programs and popping programs as they execute, manipulating the highest objects in the 
data stacks as they execute, leaving the output as the remaining data in the data stacks at 
the termination of the execution stack. This demonstrates that a general solution for 
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solving multi-data type problems may be used in GP, that more complex problems may 
be addressed, and that GP may yet be applicable to more general software problems. 

Outside of languages designed to handle dynamic generation and implementation of 
logical expressions at runtime, pre-processor applications were necessary for integration 
of GP with object-oriented languages and were therefore generally not used. To address 
this, Lucas utilised Java’s reflection library to develop Object-Oriented programs through 
GP. Reflection returns objects, accessible methods, input data type and return type, 
making it possible for object-oriented languages to discover classes, using a reference to 
a position in memory, and utilise them at run time. 

This approach gave a starting point for full, dynamic integration with pre-existing object-
oriented programs, as it may call and be called from other methods within the host 
program and evolve to fit the demands of the host program from within the host program, 
applications which following explorations into the use of reflection have elucidated [101-
103]. 

 

Grammatical Evolution 
 

Ryan and Collins developed Grammatical Evolution (GE) [104], [105] (Figure 9). As 
with GADS utilising BNF to separate the phenotype and genotype, allowing the 
manipulation of arbitrary syntax and language.  

This algorithm moved away from the manipulation of syntax trees, towards the use of a 
linear, variable length list of integers. This mapped the Genotype as integers into a BNF 
grammar, which are mapped onto production rules in the grammar, thereby constructing 
executable programs. This separation not only renders GE language-agnostic but also 
enables flexible adaptation of the search space to a wide range of problem domains. 

GE has demonstrated strong performance on diverse benchmark problems—including 
symbolic regression and the artificial ant foraging task—by exploiting its modular 
encoding scheme. The algorithm’s capacity to generate syntactically valid programs from 
a compact integer representation provides a straightforward mechanism for incorporating 
domain-specific knowledge through grammar design. As a result, GE offers a significant 
advantage in terms of extensibility and the incorporation of expert insights without 
requiring substantial modifications to the underlying evolutionary mechanism. [105-108]  

 

 
Figure 9: Timeline of seminal developments in grammatical evolution 
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An immediate issue raised with GE is mirrored with Cramer’s first algorithm [84]: due 
to the linear representation of the code, this algorithm does not have high locality, suffers 
from destructive crossovers and genome bloat and does not inherit the benefits of 
modularity from the sub-tree crossover mechanism.  

White et al. developed Basic Object-Oriented Genetic-Programming [102], bringing a 
focus on the significance of operating on objects within the same executable, again 
utilising Java’s reflection library, indicating the same relative language agnosticism as 
seen with reflection-based approaches in BNF-based AST GP models. This model 
claimed to differentiate itself from alternative OOGP approaches through the use of a 
linear representation of genes, through the use of a grammar; while the approach explored 
in this paper shows to have preferential output against GP approaches, it appears to 
simply be a re-discovery of Grammatical Evolution (GE) and its successes mirror those 
seen in GE, though its use of reflection within this search space still holds relevance 
towards a basis for GLGPPS. 

Georgiou and Teahan extended GE with Constituent Grammatical Evolution [109], [110], 
partitioning the genotype into discrete constituent genes, each encoding a defined 
segment of the output program and introducing conditional behaviour.  

Constituent genes were implemented to minimise the issues brought from a linear code 
representation through phenotype remapping of grammar. This looked to improve the 
effectiveness in the number of successful solutions generated, by localizing the 
application of genetic operators and preserving beneficial substructures during mutation 
and crossover. 

Constituent genes, in this algorithm, takes an approach of defining an additional grammar, 
supplementing the default atomic grammar. This new grammar is generated by running 
randomly generated solutions to randomly selected, small sub-problems from the main 
problem, and assigning the phenotype of the best solutions, directly to the available 
grammar. This extended grammar is then used as part of the traditional GE algorithm. 
Immediate issues with this method of constituent genes include: the requirement of pre-
existing knowledge of the problem, the reliance on sub-problem selection and an 
extension in execution time. It does however give an insight to the significance of code-
reuse and complex-functionality grammar reintegration. 

Conditional behaviour switching introduced if-else statements to the agent’s grammar, 
introducing a method for a functional non-linearity in GE while retaining linear 
interpretation and evolution strategies, further integration with traditional programming 
paradigms and greater search space per genetic sequence length. 

Experimental benchmarks, including applications to the Santa Fe Trail and Hamilton 
Court problems, demonstrate that these mechanisms improve both the efficiency of the 
search and the quality of the evolved solutions 

In 2018, Moraglio developed Geometric Semantic Grammatical Evolution [111], a 
method for deriving the benefits of the geometric layout brought from Genetic 
Programming into GE. This algorithm broke down code construction into expression 
trees, developing a secondary sequence attributed to the structure of the representation. 
In GSGE, solutions are represented indirectly as integer sequences that map to 
syntactically valid programs via a formal grammar (typically expressed in Backus–Naur 
Form). Although this indirect encoding facilitates the generation of programs in diverse 
languages, it often suffers from a low genotype-to-phenotype locality—meaning that 
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small alterations in the genotype can produce disproportionately disruptive semantic 
effects. 

Moraglio’s algorithm brings modularity and a fundamentally different search mechanic 
to traditional GE, allowing a basis for the identification of high fitness objects 
automatically during the evolutionary process, rather than on instantiation, as with 
constituent GE.  

Castle and Johnson [112] explore the significance of geometric representation, indicating 
the impact of mutation and crossover has a greater likelihood of being detrimental at 
modifications on sections of an algorithm with lower scope, but an equal likelihood of 
producing beneficial modifications irrespective of depth of scope. The hybridisation of 
these two concepts suggests an additional optimisation of GE, where mutation and 
crossover ratios may be set proportionally to scope, based off a geometric semantic 
representation. 

 

Subsumption Architecture, Particle Swarm Optimisation, Grammatical 
Herding & Template Based Evolution 
 

This section looks to explore the seminal developments in evolutionary strategies 
towards Template Based Evolution (Figure 10). This begins with simple adaptive 
behaviour for early robotics and looks towards alternative evolutionary mechanisms for 
Grammatical Evolution and the discovery of the principles behind rapid behavioural 
evolution in a virtual species. 

 
Figure 10: Timeline of seminal developments towards Template Based Evolution 

 

There is an argument that cognition is embodied [113] – that without embodiment, you 
cannot have cognition. Embodiment, the presence of an interacting body beyond the mind, 
or cognitive processor, brings the argument that cognition is constructed from the 
manipulation of the body’s environment (including the body itself). This argument 
suggests that higher level thought is a construction from the abstractions of interaction 
with the agent’s environment. This argument leads to enactivism [114], where “Enaction 
proposes to address cognition as the history of structural coupling between an organism 
and its environment” [115]. 
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Taking this concept, Brooks developed the ‘Subsumption Architecture’ [116], [117], an 
enactive approach to behaviour modelling, looking to develop complex, multi-layered 
behaviours from simple pre-defined routine modules, for robots. This model takes inputs 
from sensors and gives outputs as actuators, where the cognitive processes define how 
actuators are utilised according to the sensors. 

This cognitive process is simply a series of simple modular behaviours, in a layered 
structure. Higher layer behaviours may subsume lower layers – combining multiple 
behaviours together to form a complex behaviour. Higher level behaviours are those 
which would normally require the lower level behaviours to also be active to function 
correctly. This may be implemented as an augmented finite state machine, triggering 
multiple simultaneous behaviours depending on pre-conditions modified by the input 
sensors (Figure 11). 

 

 
Figure 11: layered subsumption architecture  

Source: [118] 
 

Kennedy and Eberhart’s seminal paper, ‘Particle Swarm Optimization’ [119], 
demonstrates a method for search space optimisation relying on a population (a swarm) 
of agents (particles) and a fitness function. In this system, agents move towards both their 
personal best-known fitness and the swarm’s best-known fitness, frequently arriving at 
the maxima of the search space, producing an alternative extrema search method to 
traditional gradient descent. This system is, itself, arguably embodied, due to agents 
exploring their search space, as an environment. 

O’Neill and Brabazon developed the Grammatical Swarm algorithm [120], successfully 
merging the Particle Swarm Optimization and Grammatical Evolution models. This 
approach classified each particle in the simulation as a “representation of choices of 
program construction rules, specified as production rules of a Backus-Naur Form 
grammar” [121]. This moved the binary string representation of programs in search space 
towards the agent’s independent known extrema and the populations global extrema 
values, generating novel programs as it moved through search space, usually producing 
similar results to traditional GE. 

Headleand and Teahan introduced Grammatical Herding (GH) in 2012 [27], a grammar-
based automatic programming technique that adopts a swarm-inspired approach for 
candidate solution generation. Unlike Grammatical Evolution, which applies genetic 
operators such as crossover and mutation directly to a binary genotype, GH employs 
population-wide herding dynamics to rapidly generate solutions that conform to a 
Backus–Naur Form grammar. GH operates by treating each candidate solution as an 
agent whose state is influenced by collective dynamics. The algorithm iteratively adjusts 
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candidate solutions based on aggregated directional information derived from the 
population. This mechanism drives a fast convergence toward moderately fit solutions 
by exploiting local information and group behaviour patterns. 

Headleand and Teahan, followed this model with Template Based Evolution (TBE) [122], 
[123], [124],  moving entirely away from GE with a model designed for the evolution of 
behaviour in situated, embodied agents, focusing on artificial life as a medium for 
implicit evolution of agent behaviour in multi-agent simulations. This focuses on the 
behavioural analogues with real world species, stepping back from automatic 
programming algorithms entirely to instead evolve parameter values for existing design 
architectures.  

This algorithm integrates predefined structural “templates” into the evolutionary process 
to constrain the search space and guide candidate solution generation. An augmented 
finite state machine averages behaviours smooths the search trajectory in the behavioural 
parameter space, effectively creating a “gradient-like” effect without relying on explicit 
derivative information.  

TBE operates by first defining a template that embodies domain-specific coding 
conventions or problem structure. The evolutionary algorithm then optimizes the variable 
elements that fill the placeholders in the template. Constraint checking is incorporated 
during genotype-to-phenotype mapping so that only valid solutions, conforming to the 
template, are produced. This approach limits the search to a subspace defined by the 
template, thereby improving convergence speed and solution interpretability compared 
to unconstrained evolutionary methods. TBE consistently demonstrates notably 
improved convergence properties relative to traditional Grammatical Evolution, given a 
heuristic template with suitable methods is applied. 

Rather than Fogel’s linear architecture, this algorithm is based on a subsumption 
architecture, a species “template”, in which a series of pre-defined behaviours are 
subsumed depending on an agent’s inputs. The value requirements of these triggers and 
the strength of the outputs of the agent vary using an evolutionary algorithm – for 
example, if the distance to a target is a switch to trigger, the distance required to activate 
the trigger may be defined by the agent’s genome. 

This algorithm looked towards implicit fitness functions, breeding as the agent enters its 
own breeding period, rather than at distinct generational breeding phases, with the 
intention of moving towards mating behaviours which are more analogous to nature. 
Taking inspiration from Grammatical Herding, this algorithm also used physical distance 
to control breeding, looking towards an Aggregation-Based Crossover Operator, to 
improve the adoption of favourable genes during crossover. 

‘Towards Real-Time Behavioural Evolution in Video Games’[118], utilised TBE to 
develop adaptive agent behaviour for competitive AI controlled characters in a first-
person-shooter video game. This architecture allowed for rapid evolution of highly varied 
behaviour which produced human-like behavioural routines with limited processing 
overhead. 
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Yampolskiy’s argument against evolutionary auto-coders 
 

Although we have seen many approaches to auto-coder solutions over time using genetic 
algorithms, we have never converged on an auto-coder that can replace a human 
programmer in the workplace for non-trivial problems. 

Yampolskiy [125], in a 2018 paper indicating the failure of evolutionary approaches to 
program synthesis, suggests the entire concept of GP is flawed, concluding that “on close 
examination, all ‘human-competitive’ results turn out to be just optimizations, never fully 
autonomous programming leading to novel software being engineered... Although hill-
climbing heuristic–based evolutionary computations are excellent at solving many 
optimization problems, they fail in the domains of noncontinuous fitness.” 

This is echoed by Spector, bringing ‘The open Issue’ in 2019 [126], to modern 
programmers, indicating that the field has not achieved a fully functional program 
synthesis algorithm and suggesting the direction of modern GP has moved away from 
the original ‘holy grail’ of the field – an auto-coder which can program like a human, or 
at least deliver non-trivial programs consistently. 

It appears that, as the complexity of the solution space increases linearly, the search 
increases exponentially. This is not surprising as, to generate more complex solutions in 
code, you need more lines of code, which for auto-coders means longer genetic sequences. 
Increasing the length of a genetic sequence increases the number of solutions in the 
search space exponentially. This means it will take more processing to search that space 
without either a heuristic guidance proportionally to the increase in dimensionality, or a 
different approach to search space exploration.  

This fundamental law of regression in complexifying space is tied to Moore’s law [127], 
the reason we can explore increasingly complex search spaces over time is due to the 
computational power increasing exponentially. Yampolskiy points out that Koza’s own 
work [128] identifiably falls into the same limitations. 

For the context of this thesis, one note by Yampolskiy is that artificial life created using 
these evolutionary mechanisms is equally trapped within the same limitations, which we 
can explore in the findings of our artefact. 

It is important to note that Yampolskiy contextualised this paper primarily around 
Darwinian evolution in the context of a vertical slice of seminal papers. While it is true 
that a GA which only uses regression may be constrained by this statistical limitation, 
Yampolskiy does not explore heuristic, modular and non-Darwinian evolutionary models 
in his argument. 

Looking back at Template Based Evolution, while this model did not attempt to produce 
a program synthesis artefact, the use of templating provides a heuristic mechanism to 
augment and split the genetic algorithm; in theory this may have had an impact to reduce 
the search space of the GA. This may be why Headleand and Teahan saw improvements 
in the evolution of behaviour from Template Based Evolution against prior explorations 
into GE. As this mechanism is explicitly hard coded in TBE, we can only expect a very 
limited modification to search space. We will be incorporating this same templating 
mechanism into the artefact in this thesis to explore the relationship between regression, 
modularisation, and dimensionality as a basis to provide a theoretical framework to 
expand beyond the limits of traditional evolutionary models. 
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Contemporary Algorithms 
 

This section looks at modern and developing algorithms for program synthesis with a 
similar design, output, or goal to the Gene-Level Geometric-Push Program-Synthesis 
(GLGPPS) algorithm developed in this project. This analysis has exposed very few 
source code generators for object-oriented programs, despite the dominance of the object-
oriented paradigm in modern programming and identifies alternative, neural-network 
derived algorithms which successfully generate some level of automatic program 
synthesis. 

Spector’s own Push algorithms [2] are still being expanded and implemented across 
various languages, including within .Net [129]. These algorithms still work on the same 
fundamental principles as the original PushGP but are periodically revised or expanded 
[130]. None of Spector’s own algorithms attempt to generate source code, though other 
GE algorithms [131] do. Notably, however, none of these algorithms move outside of 
those boundaries suggested by Yampolskiy. 

DeepCoder by Balog et al. [132], is an extension of an alternative approach to the Genetic 
Programming paradigm, using Neural Networks (NN) as a top-down, high level 
framework constructor rather than Genetic Algorithms ‘bottom-up construction. This 
takes an entirely contrasting approach to program synthesis, relying on induction from a 
trained NN and pre-existing training data sets.  

During the development of this thesis, Github Copilot [133] has been released: a currently 
ongoing development utilising a Generative Pre-Trained Transformer [134]. This model 
has since become the dominant method in commercial and research use to an 
unprecedented degree. This model classically demonstrates comparatively superior code 
comprehension in outputs against GP derived models, including PushGP [1]. 

locoGP [135] provides one existing model for ‘source-code’ generation; however the 
generated representations appear to be lower level than traditional source code, though 
syntactically valid solutions. This model utilises abstract syntax trees and dynamic 
compilation of Java bytecode, rather than traditional human-oriented source-code, but 
does make a strong argument for the plausibility of a source-code generator using 
dynamic compilation loop systems. This model is particularly pertinent to this thesis as 
it shares some similarities to approach and aims, though it operates using more traditional 
GP approaches. 

Matej set out with the intention to produce an algorithm which automatically constructed 
human-readable source code. A following approach, ‘Neural Sketch Learning for 
Conditional Program Generation’ [136], successfully generated short, type-safe code for 
programs which utilise multiple Java APIs automatically in a contextually appropriate 
format (Figure 12), notably after Yampolskiv’s article. 
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Figure 12: Examples of two automatically generated programs from the same algorithm.  

Image Source: [136]  

 
Following on from this work and ‘Sketch’[137] – a programmer guided induction 
program synthesis algorithm, ‘Learning to Infer Program Sketches’ [138] was developed, 
determining a high level program architecture which leaves gaps for search algorithms 
to fill in. 

Neural networks are effective at high level code structure and replication of trained 
search results but classically demonstrate poor performance with high computational 
complexity in smaller search spaces. Solar-Lezama argues that by “letting the neural 
nets handle the high-level structure and using a search strategy to fill in the blanks, we 
can write efficient programs that give the right answer.” [139] 

Hybrid approaches, which first architect from the top-down (classification), then 
construct from the bottom-up (regression), would likely deliver a more successful 
program synthesis algorithm then either approach independently.  

While Yampolskiy’s argument [125] appears to still stand for genetic programming 
systems independently, due to hill climbing optimisation remining trapped with 
proportional search space requirements against Moore’s law [127], Yampolskiy’s 
argument appears to be not applicable to hybrid approaches with top-down guidance. The 
top-down neural network approach conversely fails to construct algorithms due to a lack 
of a low-level code constructor or optimization mechanism, opening an exploration into 
further use of hybrid systems for high level framework construction and low-level 
optimisation. The success of the early hybrid approaches seen in SketchAdapt [138] and 
templating in TBE [123] are a testament to this, inferring some value in further 
exploration into the Genetic Programming paradigms as an element with the intention of 
developing new hybrid solutions. 

The plausibility of successful, fully functional, complex program synthesis is brought by 
the early results of SketchAdapt suggests exploration in this direction to be timely. With 
this validation of exploration into the field of evolutionary autocoders hybridised with 
the concept of the high-level controller, for efficiencies sake in the form of TBE’s 
templates, we can look to the construction of a new algorithm which attempts to push the 
limitations of genetic operators for evolving source code.  

 

Developing this algorithm into an Artificial Life context allows the exploration of 
implicit fitness and the correlation and biological emergences from genetic operators 
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which are better suited for a longitudinal experiment with dynamically changing fitness 
landscapes. This may prove a more successful, though limiting context to emerge 
automatic programming but also opens a novel exploration into Artificial Life. 

 

2.5: Summary and Findings of Literature Review 
 

This review has identified several gaps in existing literature which this thesis fills, 
particularly a lack of source code generation systems stemming from genetic operators, 
designed to be read and understood by human programmers in conventional use. This is 
particularly systemic in C# runtime environments and does not appear to have been 
approached from a single-solution language agnostic framework. It also indicates the 
general direction of this field of study: towards a universal automatic coding system 
utilising genetic operators. 

Looking at current program synthesis, we identified a significant lack in legibility of 
genetic systems, a substantial trade-off in utility between GPT-based models and GP 
based models. This indicates a significant gap in operational models which demonstrates 
the performance and search methods of GP derived program synthesis with methods for 
improved human comprehension without significant processing overhead. 

Genetic theories from biological sciences offer a grounding framework for the simulation 
of biological systems. This review suggests states of criticality which may lead to 
cascading evolutionary events or punctuated equilibrium within a co-evolving ecosystem, 
raising the significance of permitting dynamic interaction in biological or simulated 
environments. 

Genetic systems within or inspired by biological sciences derive a series of logical 
operations, some of these operations act as functional elements of the genetic algorithms 
explored in this thesis. These systems are explicitly programmed as a breed-time 
operation or data-parsing mechanism. Substantially within this set are gene insertion, 
removal, and mutation with various strategies for non-coding regions. These elements 
will direct the construction of the core algorithm in terms explicit functionality of the 
crossover algorithm itself. 

Other genetic behaviours from biological systems occur emergently in the genome of 
evolved species, such as homology, convergence, and genetic drift. These patterns in 
genetic data are observed in biology but may emerge due to geographic or behavioural 
relationships of virtual agents with varying genetic data sets reproducing, subject to the 
crossover protocol. These patterns and commonalities may be present in a simulated 
ecosystem under which natural selection with genetic crossover of breeding pairs is 
present and are therefore utilised as an element of analysis in the qualitative study of the 
artefact. 

Analysing a timeline of genetic systems towards the development of automatic program 
synthesis algorithm, we can see how the theoretical grounding derived from biology has 
inspired the development of this field from inception. As time has progressed, cross 
disciplinary and mathematically abstract theories have hybridised into the field, but 
genetically inspired solutions to the problem space have never been successful in more 
than trivial tasks. 
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This literature review analyses developments towards the artefact’s algorithm across 
multiple converging branches and highlights regions of simultaneous development of 
functionally similar research. The study indicates that the field itself has been punctuated 
by seminal developments, with several regions of historic and modern contention. Within 
the research limitations of this thesis, these generally either increase levels of abstraction, 
incorporate cross-disciplinary optimisations, or move the search space towards more 
utilitarian output formats. 

Regardless of the approach, evolutionary algorithms have universally failed to produce 
an automatic software synthesis algorithm for complex problems. An analysis of 
contemporary dialogue in the field, particularly by Yampolskiy [125], suggests that 
complex solution space exploration may be mathematically implausible due to the nature 
of hill-climbing-based algorithms, which includes the genetic algorithm and particle 
swarm series. Despite this, compounding levels of abstraction, deeper mathematical 
exploration into biological and statistical optimisation theories and cross-disciplinary 
techniques may hold some level of value within automatic program synthesis, 
particularly for shorter length, human-facing toolsets. 

With a theory for the design of the core algorithm, the literature review identifies regions 
within evolutionary inspired program synthesis paradigms may apply. As the algorithm 
should be capable of demonstrating behavioural adaptation, a context in which this may 
be effectively demonstrated is conceived: an artificial ecosystem capable of human 
interaction. 
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Chapter 3. Research Methodology 
 

Large Language Model (LLM) algorithms such as GPT have experienced rapid adoption 
due to their usability, readability, and seamless integration into development 
environments, despite their high computational overhead and concerns related to 
authorship and novelty. Conversely, genetic program synthesis methods demonstrate 
efficiency with low to medium search spaces and can generate novel solutions under 
constrained resources. However, these genetic approaches have low adoption rates, 
largely due to issues with human readability. Specifically, the prevalent use of recursive 
BNF structures, unbounded line lengths, and the absence of standardized linting result in 
code that is difficult to interpret. 

This research addresses a critical gap in literature by developing the Gene-Level 
Geometric-Push Program-Synthesis (GLGPPS) algorithm. GLGPPS incorporates a finite 
line length “scaffold”-based framework that enforces coding conventions, improving the 
structure and legibility of the generated source code. The objectives are to determine 
whether GLGPPS can achieve comparable baseline performance against modern genetic 
synthesis methods and to enhance the readability and maintainability of automatically 
generated code for the same solutions. 

As this algorithm was designed to support human comprehension without substantial 
compromise against benchmarks for completion or code complexity, a series of 
experiments are implemented to test both functionality and human utility. These 
experiments adopt a mixed-methods approach that integrates quantitative metrics: 
functionality, accuracy, quantitative comprehension complexity with qualitative 
assessments of usability and real-time application in environments involving human 
programmers. 

The following experiments are adopted for specific analyses: 

OneMax: Evaluates the abstract gene-level operator performance and search efficiency. 

Unit Tests: Validate the functionality of the synthesized code against known solutions. 

Spector and Helmuth Benchmarks: Provide comparative performance analysis and 
assess code readability and complexity using established metrics against G3P  

Artificial Life: Demonstrates the algorithm’s capability in dynamic, interactive 
environments and tests implicit fitness. 

SuperCollider: Validates the utility of GLGPPS in live, human-interactive creative 
applications. 
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OneMax 
 

As GLGPPS operates as a gene-level search with specified length alleles, an experiment 
is run to quantify how this algorithm performs abstractly in terms of fitness of search 
space without compilation into a phenotype. This experiment isolates the behaviour of 
the genetic operators in both binary and integer gene representations, converting a 
random or inverted string into a set solution. 

OneMax is used to explore the gene-level search at an abstract level and benchmark 
abstract complexity scaling and general performance on a simple, well-defined problem. 
At this level, the utility of a 2D Needleman-Wunsch algorithm for gene alignment as a 
search is also explored in the context of search space optimisation. 

 

Unit tests 
 

To test the functionality of the algorithm for solving problems, a unit test harness is 
implemented which can test generated code against either a series of known solutions or 
a known working solution algorithm. 

A common problem in this space is searching for accuracy in irrational numbers, we use 
Pi as an example benchmark. 

For further implementation tests, randomly generated numbers could be passed in large 
quantity to a working addition algorithm and the solutions for the test algorithm can be 
compared. A simple sum of three inputs is used, addressing the algorithms’ ability to 
write a simple function which can take three integers and return their sum. 

For more complex problems, known solutions are read in from an external file with a 
known input and an expected output. 

 

Spector and Helmuth Benchmarks 
 

Using the unit test harness, we can look to standard benchmarks for Program Synthesis. 
A the point of writing this thesis however, the only standard benchmarks are by Spector 
and Helmuth [7], which advocate analysis to remain at completion only. These 
experiments will however be analysing the code generated for a range of readability 
metrics: cognitive complexity, maintainability index, cyclomatic complexity, lines of 
source code and lines of executable code. 

We explore a subset of these benchmarks with a focus on a comparison to known 
solutions to this benchmark from other genetically inspired solutions, focusing on 
analysing standard human comprehension metrics to determine if GLGPPS produces 
more human-centric solutions. 
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These benchmarks are limited by the number of standard benchmarking tools program 
synthesis comprehension and the number of existing genetic program synthesis 
algorithms and benchmarks in the field. 

As these benchmarks have been tested on the main contemporary comparison algorithm 
G3P, results are directly compared for completion, generations to completion and a range 
of complexity statistics. 

 

Artificial Life 
 

To introduce human interaction, analyse qualitatively GLGPPS in implicit fitness and 
explore the use of a template-based mechanism to structure evolutionary complexity in a 
classical use-case, the algorithm is placed into a behaviour controller for a many-agent 
Artificial Life simulation. This analyses specific emergent behaviours and convergence 
rates, demonstrating GLGPPS’s ability to generate complex, functionally variable code 
without explicit guidance at a rate compatible with human interactors.  

 

SuperCollider 
 

As GLGPPS is intended for human workflow integration, a model is utilised to 
demonstrate GLGPPS as a tool in a working environment. 

The GLGPPS scaffold library is modified for “supercollider” code, a music language 
which operated dominantly with mathematical transformations of objects to produce 
sound waves. This experiment also demonstrates consistent operation to a live audience 
in multiple languages, including unconventional languages. 

The initial experiment demonstrated a live performance with human interactors, 
providing feedback as a scale: this feedback was used as the fitness function for evolving 
subsequent generations in real-time. 

The second phase of this experiment saw generated solutions directly implemented into 
musicians’ own code as part of a live collaborative performance. The details of this series 
of experiments can be found in the Publications Arising from this research. 

Our experiments include assessing abstract gene-level search performance (OneMax), 
evaluating functionality through a unit test harness, comparing human-centric metrics 
with other solutions (benchmarks), exploring implicit fitness in artificial life, and 
investigating GLGPPS within music collaborative practice workflow. These experiments 
collectively contribute to our understanding of program synthesis and human interaction. 
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Chapter 4. Artefact Design and Implementation  
 

This chapter details the development of the artefact for this thesis, which comprises the 
Gene-Level Geometric-Push Program-Synthesis (GLGPPS) algorithm and its integration 
within a networked server framework designed to host a parrellised, multi-use framework 
with inheritance of an Artificial Life ecosystem, large file parsing, and mouse and 
keyboard control for code export.  

This describes an algorithm with comparable performance and improved readability to 
contemporary genetic program synthesis methods, with a platform to apply the algorithm 
to a range of environments. 

 

4.1: Design Objectives: 
Human-Centric Code Generation: Develop a system that synthesizes source code 
conforming to standard coding conventions (e.g., structured indentation, modular 
function definitions) to maximize human readability. 

Cross-Language Agnosticism: Ensure the algorithm compiles across multiple 
programming languages by enforcing generic, language-independent formatting 
rules and leveraging a scaffolding mechanism. 

Real-Time Co-Evolution: Support interactive, real-time evolution where the system 
can co-adapt with human users.  

Structured Genetic Representation: Utilize a 2D genetic matrix paired with a 
scaffold library to enforce a strict, linear construction of code. This approach 
guarantees that genetic operations (e.g., crossover, mutation) preserve the syntactic 
and semantic integrity of the generated code. 

Geometric and Heuristic Enhancements: Integrate geometric-inspired methods 
(push-pop stack for indentation control, depth-based mutation and crossover) and 
heuristic methods to manage complexity and enhance convergence rates during the 
evolutionary process. 

Robust Runtime Architecture: Implement the environment in a high-performance, 
multithreaded .NET Core server framework that can efficiently manage resource 
constraints while executing dynamically generated code. 

Dynamic Variable and Scope Management: Incorporate mechanisms for 
automated variable assignment, dynamic scope resolution, and type control to ensure 
that generated programs are functionally complete and free of semantic errors, 
mitigating compilation and runtime catch expense. 

Optimized Trade-Off Between Efficiency and Flexibility: Strike a balance 
between evolutionary overhead and the runtime efficiency, ensuring that the system 
remains responsive during live interactions and under heavy background 
computational load. 

Empirical Benchmarking and Validation: Expose variables for comparison to 
program synthesis benchmarks, incorporating both quantitative performance metrics 
and qualitative assessments of code readability and maintainability. 
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These objectives collectively underpin the development of an innovative, human-centric 
genetic program synthesis system while addressing existing limitations in automated 
source code generation. 

In investigating the mathematical foundations of evolutionary processes, modifications 
and extensions to genetic algorithms can be conceptualized as balancing three 
fundamental trade-offs: adaptive potential, efficiency, and speed of adaption (see Figure 
13). An increase in the mutation ratio accelerates exploration of the search space—thus 
enhancing speed of adaption but concomitantly reduces the probability of reliably 
converging on a global optimum, thereby diminishing adaptive potential.  

Incorporating a templating mechanism to restrict the search space can limit adaptive 
potential if the global optimum does not lie within the predefined template boundaries. 
To mitigate these conflicts, the proposed algorithm segregates the evolutionary process 
from runtime constraints. This decoupling reduces the pressure to balance efficiency 
against evolution, while still enforcing an upper bound on computational cost to ensure 
that system performance is not compromised.  

 

 
Figure 13: Evolutionary Algorithms Ternary Plot 

 

By separating the evolutionary process from the runtime requirements, we can also 
reduce the need to balance for efficiency. However, if the efficiency cost is too significant, 
it will severely impact the performance of the host device and may cause lengthy 
processing delay, which would detriment human engagement or lead to software failure 
at hardware capacity when breeding in an AL simulation, so a maximum still needs to be 
formed. 

Accounting for the need to co-evolve with humans, who may have wildly varying 
expectancies and patience, especially in a system which requires dedicated human 
interaction [115], the focus on speed of adaption becomes more significant, but so does 
the complexity of outcomes. The system would need to cater for both dedicated and 
bursty interaction. The latter process is addressed from a structing method TBE resolved, 
the prior is addressed through a new heuristic program synthesis architecture, capable of 
heuristically exploring the entire search space of a programming language. 
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4.2: A Gene-Level Geometric-Push Program-Synthesis 
(GLGPPS) algorithm for Source Code Generation 

 

This section covers the development of a novel algorithm at the core of this project:  

Gene-Level Geometric-Push Program-Synthesis (GLGPPS), a novel evolutionary 
process for complex behavioural evolution, with minimal hard coded architectures, for 
runtime operation in large-scale, multi-agent, artificial-life systems with human 
interactors. This brought a preference for an algorithm which is as lightweight as possible 
at run time, would run on modern servers and could be integrated as efficiently as 
possible into complex applications, with live dynamic evolution. 

GLGPPS is a novel approach to program synthesis that enforces a linear, line-by-line 
construction of source code. By implementing a restrained interpretation of Backus–Naur 
Form to generate code stubs, the model achieves closer adherence to established clean 
coding principles compared to traditional genetic programming techniques. 

The naming convention is constructed as follows: 

Program-Synthesis: The automatic synthesis of software solutions to programming 
problems. In this case, complete files designed to be executed at run-time autonomously. 

Gene-Level: this algorithm operates by constructing a single line of code from a single 
row of a 2D matrix. For stability, at crossover, the algorithm shares one entire line of this 
matrix, a whole ‘gene’, at a time. A templating mechanism, which draws a code “scaffold” 
from a library of pre-defined, human-defined code “scaffold”, is used as the broad outline 
of a line of code. This outline is then filled out using values from the rest of the gene. 

Geometric-Push: using a push-pop stack, a method for constructing algorithms 
consistently with indentation depth that can handle variable scope control, allows scope 
control and indentation, with “if”, “else” and “for” loop functionality. This indentation 
depth can be utilised as an exposed semantic depth value. 

 

4.3: GLGPPS Source Code Interpreter for Program Synthesis 
 

As a source code synthesizer, the algorithm generates lines of code which populate the 
body of functions. Like the contemporary algorithm Grammar-Guided Genetic-
Programming (G3P) [168], this body of functions is placed inside a hard-coded wrapper, 
which constructs the import statements for required libraries, generates a function header 
with the proper signature and access modifiers, and instantiates necessary support classes. 
It also embeds hard-coded variables and control values to manage runtime behaviour. 
This structured approach ensures that the final output conforms to established coding 
conventions and is immediately compilable and executable. The main class is also 
wrapped in a try-catch block, in case of execution failure. Timeout may be applied when 
calling the class as an async operation from the target application, rather than inside the 
generated code itself, allowing external control over premature termination. 
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This process begins with a list of lists of strings, these strings are decompiled lines of 
code, held within the internal lists, which are used to interpret the genetic sequence into 
source code. 

 

Gene level Scaffolds 
 

At the core of this algorithm is the gene-level scaffolding mechanism. This scaffold 
controls the construction of a single line of code. A code block can therefore be 
constructed with a series of scaffolds. This mechanism encourages atomisation and 
emphasizes evolutionary pressure towards code structure. Complex redundant 
structuring can then be more easily optimised with a simple linter. 

The scaffolding system uses an integer-based genetic algorithm to control evolution, 
using a 2D matrix of integer values rather than a 1D array of Booleans. To generate code, 
the first value in each line in the matrix acts as a pointer to a code scaffold – a line of 
code which has been separated into component parts, with its variables removed.  

Figure 14 illustrates the fundamental concept behind the templating system. A string 
scaffold is constructed in a fixed pattern: it consists of alternating literal string segments 
and placeholder markers. These markers control how the use of a variable in this location 
is handled, either creating a new variable, using an existing variable or reading the value 
of the gene directly as a value. The length of this scaffold is proportionate to the 
maximum number of evolved variables required in a library; it is the width of the 2D 
matrix of agents’ genes. 

 

At the end of this scaffold, a pair of integers is appended. These integers serve as control 
flags: 

• The first integer indicates the depth flag, which determines how the generated 
code should be indented—effectively controlling the scope and hierarchical 
structure of the program. 

• The second integer specifies the variable type flag (e.g., float, int, or Vector3). 
This flag directs how a given placeholder should be interpreted or what type of 
variable should be inserted. 

This templating mechanism ensures that every generated line of code adheres to a pre-
defined structure, thereby enforcing consistent coding conventions. The alternating 
sequence of fixed literals and dynamic placeholders—along with the terminating control 
flags—enables both precise control over indentation and variable assignment as well as 
the flexibility required for generating human-readable code. 

By clearly mapping the genetic representation (the 2D matrix rows) to these scaffolds, 
the system guarantees that each line of code is constructed with a coherent format. This 
directly contributes to improved readability and maintainability of the auto-generated 
program, which is a primary objective of this research. 
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Figure 14: GLGPPS Scaffold structure 

Using the genetic sequence and the library of scaffolds, we can map how the genetic 
matrix is used to construct an algorithm. API calls, external references, complex object 
parsing, multiple function calls and recursion are easily applied, when necessary, through 
simple additions to the scaffold library. Pseudocode for this algorithm can be found in 
Appendix Figure 52. 

 

Interpreting the Genetic Sequence 
 

Each agent’s genetic sequence is stored in a variable-sized 2D matrix of integers. The 
matrix is structured as a list of lists, where each row (gene) contains codons of varying 
length. The codon length is determined by the longest codon present in the data set. The 
length of the gene sequence itself is also variable, as is the number of agents.  This 
produces a list of lists of lists of integers, a potentially very large 3D data structure which 
is accessed by multiple simultaneous threads with both read and write operations. 

The main thread batches a group from this data structure to be processed, an interpreter 
on this thread converts the integers of each entry in every list in every agent in its batch 
into source code, converting each line of the data structure into strings which follow a 
format of <string>, <value>, <string>, <value>… (Figure 14), where a compiled string 
is generated by adding sequentially each <string> object literally and filling each <value> 
object with either:  

0: the corresponding allele value directly from the agent’s genetic data for that entry 

1: a named variable, selected from a list of all existing variables against a modulo of the 
agent’s genetic data for that entry 

2: a new variable is created and added the list of named variables 

Each line of the genetic code (gene) will convert into a single line of source code. The 
first integer of each row serves as a scaffold selection index, determining the structure of 
that code line. The system applies a modulo operation to prevent out-of-bounds errors, 
ensuring selection remains within available scaffold entries. Subsequent integers in the 
row function as control variables, defining how placeholders in the scaffold structure are 
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populated, either pulling values directly from the genetic sequence or referencing existing 
variables. 

The current model of the scaffold selection algorithm simply uses multiple instances of 
the same scaffold to produce the same results as assigning a likelihood to each entry, 
though ideally a variable occurrence frequency value would be assigned instead. This 
produces a form of fitness-proportionate selection [140], though on a chromosomal level 
rather than an agent level, allowing a heuristically lead approach which optimises the 
likelihood of selecting relevant chromosomes more consistently and faster when the 
attributed likelihoods are applied in accordance with actual fitness [141]. 

Different hard-coded lists of decompiled code fragments can be used for different 
languages, so the program can generate an arbitrary number of arbitrary length code 
snippets for most standard object-oriented languages. 

 

Genetic Algorithm 
 

To breed agents within the evolutionary process, a genetic algorithm operates to run the 
genetic process, handling crossover and mutation, allowing two parent agents to create a 
child offspring agent. 

As the auto-coder operates on a 2D integer matrix, the Genetic Algorithm (GA) is also 
designed to operate on this data structure and utilises deep copy mechanisms to write 
directly into the working master genetic sequence. Otherwise, it treats each row of the 
core algorithm in the same way a normal linear integer GA would, so we can utilise the 
same optimisation techniques seen in contemporary GAs. 

 

Crossover 
The algorithm, at crossover, randomly selects between one parent’s values (in this case, 
a list of integers) or the other parent’s values. The crossover function selects gene 
sequences from either parent using a thread-local, static random function. This method 
ensures reproducibility while preventing duplication of values in a parallel execution 
environment. Applying crossover at the gene level retains scaffold structure, minimizing 
disruptive recombination, whereas allele-by-allele crossover modifies individual 
components, which can lead to functional degradation. This function will return 1 or 0, 
indicating one parent or the other, and a new genetic sequence is constructed by carrying 
over the gene. 

This is the most simple implementation of crossover and we can expect the results to 
demonstrate the same regression convergence from it that we see in traditional GA’s [19]. 
However, it can be applied on a gene-by-gene basis as well as on an allele-by-allele basis. 
This prior carries over entire genes, rather than single alleles as we would see in 
traditional linear genetic operations. 

Using classical linear crossover operations on an allele-by-allele basis alone, we would 
expect lower survival rates in offspring and a slower convergence compared to full gene 
crossover, as the entire behaviour defined by the scaffold would be completely altered 
by its comprising alleles changing, making the crossover operation behave as a more 
constrained form of mutation when two dissimilar genes crossover. 
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Mutation 
Due to the data structure being 2D, mutation can occur at either level, changing either 
the codon (each individual integer) or the gene (the entire row). These two operators can 
individually set their mutation ratios as, following the theory from Geometric Semantic 
Evolution [111], a full gene mutation will be more likely to have a negative impact than 
a codon mutation. 

The mutation process itself replaces the existing value with a random new value on the 
codon, or a series of random new codons at the gene level. 

In normal code, low integers are the most common numeric variables, reflecting human 
preference for these values [142], a formula was created (Figure 15) to increase the 
likelihood of returning low values when generating new values. This is not applied to the 
first entry in the genetic sequence, as that entry is used to select the scaffold the agent 
will use in program synthesis. 

 

 
Figure 15: Cumulative frequency graph for: 

𝑋𝑋 =  −7.77 +  1000 / (1 +  𝑌𝑌 / 10.15))  −  1 

 

Removal and insertion in invariable length genetic sequences may also be applied, if 
every removal applied to the GA is followed by an insertion and vice-versa, to maintain 
sequence length.  

 

Removal 
This process removes an entire gene from the genetic sequence, which simply removes 
an entry in the list at the location of the gene. This does not apply to codons separately 
and should be applied with a lower occurrence ratio than mutation. 

 

Insertion 
This method creates an entirely new gene, as a new list of integers. The integers are 
generated at random, using the same limitations as the mutation process, taking into 
account the first element in the sequence.  

 

Geometric Push, Depth-Multiplicative Mutation 
As the genotype compiles into a phenotype with an interpreted, non-linear structure, we 
can use the phenotypical structure to modify the genetic algorithm itself. This is an 
element inspired by Geometric Semantic Grammatical Evolution [111], which applies a 
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multiplier to the mutation likelihood of any one element in the genome according to the 
indentation depth it’s phenotype would produce. 

This takes the indentation depth value from the depth controller (see Depth Controller) 
and utilises it as a multiplier against the mutation, insertion, and removal ratios at 
crossover, on a line-by-line basis. The higher the indentation depth, the higher the 
mutation ratio. This value is scaled logarithmically to prevent severe mutation ratios at 
high indentation depths. 

 
Figure 16: Depth-based mutation ratio derived from phenotype line-by-line scope 

 

Using the push-pop architecture, is that the indentation of the generated algorithm may 
be utilised as a form of geometric structure, allowing a similar approach to Geometric 
Semantic Grammatical Evolution [111], where the depth of the current operation may be 
utilised to modify the mutation ratio (Figure 16) or be utilised as an alternative form of 
sub-tree crossover (Figure 17). 

 

 
Figure 17: Example of depth-based crossover, exchanging "if" statement blocks 
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Figure 18: Two agents, Parent 1 without insertion, parent 2 with insertion, generating a structurally 

damaged offspring. 

 

Correction (2D Needleman-Wunsch) 
Variable-length genetic sequences introduce fragmentation challenges during crossover, 
where insertion and removal operations cause gene misalignment. Without correction, 
even nearly identical parents can produce offspring with disrupted structure. We explored 
several methods—truncation, code transfer, and random sampling—to realign these 
sequences. While truncation preserves structure, it risks prematurely shrinking the search 
space; random sampling, though diverse, often yields fragmented outputs. Our preferred 
strategy dynamically selects one parent’s gene length to standardize sequence size, thus 
maintaining genetic stability. 

Although a modified Needleman-Wunsch realignment algorithm was implemented as a 
2D correction mechanism, consistently preserving both gene-level and allele-level 
integrity during crossover, leading to improved speciation rates and enabling the 
generation of functionally coherent offspring (Figure 18). 

Addressing crossover misalignment, several correction methods were explored: 
truncation, code transfer, and random sampling. Truncation risks shrinking search spaces 
prematurely, while random sampling disrupts structural integrity. The preferred approach 
dynamically selects one parent’s sequence length to maintain genetic stability.  
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Handling agents who are not of equal size thus becomes a design consideration due to 
this correction process. Options would comprise either truncating all agents to the length 
of the shortest agent, copying over the code from the longest agent or randomly sampling 
from the longest agent. Truncation alone is likely to lead to rapidly diminishing genetic 
sequence length, which may encourage limited solution search spaces. Random sampling 
from the longest agent is likely to cause more loss of structure, so the preferable result is 
to randomly select between the length of one of the parents. 

 

Figure 19: Algorithm for identifying all permutations of two aligned sequences 

1. Function GenerateArrangements(content, n, arrangement, currentIndex, output): 
2.       If (size(arrangement) == n) Then 
3.             contentSet ← CreateSet(content) 

4.             arrangementSet ← CreateSet(arrangement) 

5.             If (contentSet ⊆ arrangementSet) then 

6.                   output ← output + Join(",", arrangement) + "." 
7.             End If 
8.             Return 
9.       end If 
10.       Append(arrangement, -1) // Add a blank entry (space) 
11.       GenerateArrangements(content, n, arrangement, currentIndex, output) 
12.       RemoveLast(arrangement) 
13.       For (i ← currentIndex) to (size(content)) Do 
14.             Append(arrangement, content[i]) 
15.             GenerateArrangements(content, n, arrangement, i + 1, output) 
16.             RemoveLast(arrangement) 
17.       end For 
18.  end function 

 
 

 

A Needleman-Wunsch re-alignment algorithm was produced (Appendix, Figure 51) with 
limited application. In most experiments, insertion and removal were applied at the same 
time to create agents with consistent size, so one gene insertion would always be followed 
by one gene removal, to mitigate the impact of the automatic copy-over effect. 

This 2D representation sees most of the manipulation at a gene-by-gene level as the most 
significant change to an agent’s genotype arrives from gene level crossover algorithms. 
A modified implementation of the Needleman-Wunsch algorithm was created as a 
correction method 

As the correction that this algorithm looks to resolve is gene level as well as allele level, 
a new support algorithm was created to generate every permutation of alignment of genes 
which maintain the order of both sequences created and do not remove or add any genes. 
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This recursive algorithm (Figure 19) generates a series of pairs of integers which identify 
all permutations of the two aligned sequences with worst-case complexity of 𝑂𝑂(2^𝑚𝑚). 
This complexity makes his algorithm unsuitable for larger searches with constrained 
compute or time allocation and the resulting search for smaller samples did not 
demonstrate substantial  

 

 
Figure 20: Alignment Correction derived from similarity in scaffold ID values. 

 

Using this list of pairs of arrangements, a novel gene (rather than allele) based alignment 
variation of Needleman-Wunsch is used for crossover. This algorithm checks if the tested 
gene is identical, different at all or does not match to an existing pair for best alignment. 
This algorithm selects randomly between which element between both genes to add to 
the output string during trace-back.  

 

A simple visualisation of this method in action can be seen in Figure 20. This represents, 
at a high level, how this can be used on a scaffold-by-scaffold basis. This would identify 
similar code blocks using the first allele in each codon and grouping codons of high 
enough similarity, permitting direct carryover between them. This would allow two 
genomes of different length to crossover while maintaining functionality, without a 
crossover mechanism to correct misalignments when injection and removal is present, 
the child would more often produce noisy solutions, losing the core functionality of the 
whole solution, due to a single variation in gene length. 
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Converting Genetic Integers to Source Code 
 

After the first value (which is used to select the scaffold), entries of each line of an agent’s 
genetic sequence are used to fill the variable information in the scaffold. How these 
variables are used depend on an integer within the scaffold itself. The scaffold may have 
multiple, different corresponding variable control integers, currently these integers 
represent the following use-cases: 

0 (Direct Insertion): The genetic value is used directly and literally; it is inserted as a 
string directly into the output source code. 

1 (Variable Reference): The genetic value is used against a list of existing variables. 
Modulo is used to prevent out of bounds reference exceptions. The available list of 
existing variables is dependent on a scope controller and variable ID mechanism, so the 
same codon will not necessarily produce the same phenotype, as it is dependent on the 
preceding code. 

2 (New Variable Creation): A Request is made to create a new variable. The genetic 
sequence is not applied here, instead, a process is applied which creates a new variable 
within the source code, which proceeding calls to use an existing variable will have 
access. 

 

For both variable referencing and creation, a dedicated value formatter converts integers 
into consistent strings. Pre‐defined variables—such as input parameters (e.g., hunger, 
age, distance metrics in simulations, or constants like π, e, or g)—occupy the initial 
positions in the available variable list and are treated identically to automatically defined 
variables once established. 

Figure 21 demonstrates an example gene with alleles 8,7,4 mapping against the scaffold 
library. Scaffold 8 is selected, corresponding to the first allele in the gene. This scaffold 
holds a string representation of the main body of a line of code and, in this case, has two 
variable control integers, 2 and 0 (create new variable and use gene value directly). As a 
new variable was requested, the current counter of existing variables is incremented and 
a new variable is added to accessible variables the list, using a simple string generator 
with a list of banned variable names. 

The output is a complete line of code (Double G = 4;). Although concatenating these 
lines produces source code, this method lacks scope control and context-sensitive 
structural delineation. Without proper scope management, conditionals and loops cannot 
be safely integrated, as their correct interpretation depends on hierarchical structure. 
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Figure 21: Process of interpreting the genetic sequence “8,7,4”, without depth control, 

to source code. 

 

 

Depth Controller 
 

To achieve robust scope control, GLGPPS incorporates a push-pop stack system (Figure 
22). This allows both proper indentation for source code legibility and proper variable 
scope control, so it can prevent variables instantiated inside a block from being accessed 
outside of that block. 

This depth handling algorithm (Figure 23) also allows us to expose an element utilised 
in Geometric Semantic Evolution [111], directly to source code. We can use the depth of 
indentation to assume diminishing return of damaging mutations to linearly beneficial 
mutations at increased depth. We can modify the mutation ratio proportionally to the 
indentation depth, to optimise the gradient between beneficial mutations and detrimental 
mutations. 

This “geometric push” mechanism is distinct from Lee Spector’s Push algorithm [130], 
though this algorithm does use multiple push-pop stacks for multiple variable type 
control. The scope controller maintains a dedicated stack by pushing variables as they 
are introduced and popping them once their defining scope ends. A variable can only be 
referenced if it remains in the stack, with its reference determined by its positional index 
in the genetic sequence. This approach enables dynamic management of in-scope 
variables while preventing null references and type conflicts. 
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Figure 22: Example of scope as seen by depth controller stack. 

 

This stack works using a push-pop stack architecture: a push occurs when the scope is 
incremented (for example, an opening bracer from an ‘if’ statement), the push increments 
the depth and allocates all following code into the current stack, until another push or a 
pop occurs. A pop occurs when the scope is decremented (for example a lone closing 
bracer ‘}’), which removes the highest-level stack from accessible scope. If a new push 
occurs, the previous code at the same level stack is ignored.  

A depth counter is used to determine the current depth of the scope, if the genetic 
sequence terminates and the stack depth is greater than 0 (the default minimum stack 
depth), a cascade of closing bracers is applied for every unresolved depth. This may be 
removed while retaining scope control for languages who do not require explicit 
termination of scope. 

The number of tabs used to produce indentation for visual consistency also defines the 
stack depth. At the beginning of each line of code, an indentation is produced 
proportionally to the current stack depth, producing visual indentation.  

Another benefit of this system is the use of the ‘else’ statement. If the depth is greater 
than 0, and the only existing depth incrementors are compatible with ‘else’ statements 
(e.g., a complimentary ‘if’ statement), we have an environment where an ‘else’ statement 
is syntactically valid. ‘Else’ statements do not modify depth but are handled by being 
placed one indentation lower, as they both end and begin an indentation, so the following 
line of code will retain the same indentation depth as the previous line.  

Notably, a modification will need to be made to the stack architecture (a simple binary 
check) for each depth to define if its ‘push’ was associated with an associated starting 
structure. For example, a ‘for’ loop is not compatible with an ‘else’ statement. This would 
be easy to implement, though this model does not use loops to reduce the likelihood of a 
subspecies who utilises a recursive, non-functional, multi-layer ‘for’ loop which uses a 
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disproportionately heavy CPU cycle. This method should be included in auto-coders 
whose solution space benefits for alternative indentation patterns. 

Looping over these systems for every line of the genetic sequence, we can produce a fully 
functional, compilable string of source code. 

 

Figure 23: Algorithm for controlling code indentation  

19.        if ((indentDepth + 1) > Size(stack)) then 
20.                 Append(stack, 0) 
21.         else if ((indentDepth + 1) < Size(stack)) then 
22.                 while ((indentDepth + 1) < Size(stack)) do 
23.                         stackTopValue ← stack[LastIndex(stack)] 
24.                         valuesAnnounced ← valuesAnnounced - stackTopValue 
25.                         for (i ← 0 to (stackTopValue - 1)) do 
26.                                 RemoveLast(valueList) 
27.                         end for 
28.                         RemoveLast(stack) 
29.                 end while 
30.         else if (valuesLastTick < valuesAnnounced) then 
31.                 stack[LastIndex(stack)] ← stack[LastIndex(stack)] + 1 
32.         end if 
33.         valuesLastTick ← valuesAnnounced 

 
 

 

Multiple variable types 
 

As the agents for the AL implementation will be dealing with co-ordinate geometry, 
while also operating primarily with floating-point values, a method is introduced to 
handle multiple data types as independent object structures. Currently, these are handled 
at the scaffolding level (Figure 24), as the data type and how it is sourced is defined as 
an integer within the scaffold. For this simulation, the rightmost integer and associated 
operator are used to control indentation, with + adding and – subtracting.  

The following variable control integers are used for variable insertion: 

0 = Use value directly from corresponding genetic sequence 
1 = Use existing float from existing floats table 
2 = Create and assign new float to floats table 
3 = Use existing Vector3 from Vector3 list 
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Figure 24: Examples of code scaffolds 

1. new List<string> { "1", " = ArrayDistance(", "3",",","3",");","0"},  
2. new List<string> { "target= ","3",";", "0"}, 
3. new List<string> { "target = Lerp(", "3",", ", "3", ", -1);", "0"}, 
4. new List<string> { "3"," = ","3",";", "0"}, 
5. new List<string> { "3"," = Lerp(", "3",", ", "3", ", -1);", "0"}, 
6. new List<string> { "if (", "1"," > ", "1", "){", "+1"}, 
7. new List<string> { "if (", "1"," < ", "1", "){", "+1"},  
8. new List<string> { "if (", "1"," > ", "0", "){", "+1"},  
9. new List<string> { "if(", "1", " < ", "0", "){", "+1", 
10. new List<string> { "if (breedCount Down <", "0", "){", "+1"},  
11. new List<string> { "if (breedCount Down <", "1", "){", "+1"}, 
12. new List<string> { "if (ArrayDistance (", "3",", ", "3",") > ", "0","){","+1"}, 

 
 

The algorithm is not limited to utilising these four variable control integers, it is possible 
to add more, by simply adding a reference value and directly coding how that new data 
type should be modified in the interpreter itself. 

It should be noted that this allows Vector3’s to be modified directly but does not currently 
allow new Vector3’s to be generated. While it is possible to do this, it would require 
modifying the scope controller, using a 2D matrix which only allows access to variables 
if they are both in scope and of the associated data type, so that generated variables may 
be called in the appropriate sequential order without counting inaccessible data types. 

For loops are created with a counter set outside the testing function, which increments 
for every iteration of any loop inside the tested function. This prevents infinite or very 
high recursion scenarios. When testing, agents who time out are given a zero score. 

 

Genetic Summary 
 

The Gene-Level Geometric-Push Program-Synthesis (GLGPPS) algorithm represents 
source code as a two-dimensional genetic sequence, where each row corresponds to a 
complete line of code. Within this framework, evolution is driven genetic operators, 
including crossover, mutation, gene insertion, and gene removal, which explore the 
solution space. In the GLGPPS model, the crossover mechanism operates at the gene 
level, enabling the exchange of entire code lines between parent agents. This gene-level 
recombination maintains the integrity of scaffold-based templates—ensuring that 
structural and syntactic coherence is preserved throughout the evolutionary process. 

Figure 25 illustrates the application of these operators in practice, demonstrating how 
gene-level crossover, coupled with mutation and gene removal, produces a new child 
agent from a pair of parents. The crossover operation selects complete genes to be 
swapped, which guarantees that the fundamental building blocks of the generated source 
code remain intact. In parallel, mutation is applied at both the allele and gene levels, 
providing fine-grained and structural modifications respectively, while removal 
operators adjusted the overall length of some genes. 
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Figure 25: Complete crossover mechanism with mutation, insertion, and removal across multiple genes 

 

Templating Mechanism 
 

Addressing a need for rapid dynamic evolution with likely anticipated behavioural 
factors in a virtual ecosystem, a Template-Based variant (TB-GLGPPS), taking 
inspiration from Template Based Evolution (TBE) [124] was developed. A subsumption 
architecture can be generated within the source code. This architecture can be enacted as 
multiple function calls from a main function which subsumes a series of functions. 

The 2D data structure defines a function as each row of integers (alleles) compiles into a 
line of code (genes), and a series of lines of codes creates a function (chromosomes). To 
permit the execution of multiple functionalities from within the source code, multiple 
functions are used, creating a 3D data structure (Figure 26). 

The templating architecture works with a multi-layer Augmented Finite State Machine 
(AFSM) (Figure 26). The values of the AFSM are read from the genetic code of the agent, 
using the first line of the agent’s genetic sequence (a, b, c) as its trigger threshold. Each 
of these thresholds are testing against a sensor input or a function output. The AFSM 
enacts function calls against the auto-coder’s automatically generated functions (A, B, C, 
D, E). 
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Figure 26: Attaching templating mechanism (left) to a 3D Genetic Sequence (right) 

 

We can also apply the output of one of the auto-code functions against another as part of 
the AFSM. This simply compares the output of the two behaviours as a determinant for 
the trigger of another auto-code script. 

This mechanism will implicitly bind the behaviours of the agents to work around hard-
coded sensor input constraints, though still leaves the behaviours adopted to each of these 
constraints open. This templating architecture assumes existing knowledge about the 
anticipated structure of the output source code as the AFSM’s structure and the input 
comparatives are hard coded, so is only applied when explicit intervention to enforce 
assumed pre-requisites of the algorithm should be applied, or when a general structure is 
known or preferable – a hard-coded template is used for this thesis. 

Analysing the prospective search space, this will enforce a higher dimensionality by 
default, so when designing the templating system for implicit fitness functions, those 
functions must either be substantial to an agent’s value, or their use should be limited. If 
too many are applied without significant value, the agents will be likely to experience 
loss of function mutation, though this will generally propagate in code which is less 
critical to a species survival. Notably, it is likely that as mutation rate increases, the 
likelihood of loss of function mutation or the formation of amplified code will increase 
proportionally. 

 

Automatic unused-variable removal 
 

GLGPPS is subject to producing unused variables or redundant behaviour, “bloat”, 
assignments and statements which do not in any way modify the output of a generated 
function. This generated code bloats the output, harms legibility and comprehension. 
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Classically, static code analysis tools, often using a linter, will identify unused variables 
from an abstract syntax tree representation of the code.  

A simple variable removal algorithm is implemented for GLGPPS which identifies 
unused variables, by tracing backwards from the output variable, line by line. Active 
variables are held in a stack, which are removed when announced. This implementation 
is novel in evolutionary program synthesis. 

As a line is analysed, if the variable des not contribute towards the output variables or 
any contributing variable met so far, the variable is pruned.  

An exception is made for terminating bracers, which search the pairing statement 
announcement for any control values, which are put into a separate stack. Any value 
which modifies any variable which is not created inside the loop but is modified inside 
the loop is not pruned. If a statement block does not modify any external variables, the 
block is removed. A specific statement is also made for “for” loops, where the search 
limit is removed. 

This implementation is simple but operational in the context of the problem spaces 
addressed and the scaffolds used for the experiments in this thesis. A more complete code 
analysis tool is recommended in future iterations of this algorithm for improved output 
comprehension – it is likely an existing linter could be integrated directly in future 
iterations. 

 

4.4: Server Architecture 
 

To support a co-evolutionary artificial life and human-centric program synthesis platform 
with multi-user connectivity, a robust, real-time simulation framework was implemented. 
The server architecture, bult for the GLGPPS system, provides centralized control over 
the evolution of agents, environmental simulation, and real-time client interactions. 

For multiple simultaneous users to collaborate within the same virtual environment, the 
virtual world experienced by all simultaneous end users is received, as data, from a server 
(Figure 27). This centralised server handles the sending and receiving of data from users, 
and the entire Artificial Life simulation: the evolution of agents, the model of the terrain 
and the behaviour and physics of agents.  
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Figure 27: Server architecture diagram 

 

The core application was an extension of the central GLGPPS server, the system ensures 
consistent performance, scalable real-time operation, and synchronized user experiences 
in a collaborative virtual ecosystem. 

A Unity application is created for client-side rendering and interaction, where an 
application can easily be exported to the HoloLens for the Mixed Reality interface for 
rendering. This model reproduces, with enhanced visual effects, the geometry of the 
terrain and the location of agents, from packages received from the server. It also 
provides a platform to transmit data back to the server, allowing requests for human 
modification of the virtual environment on the server, from the client. 

The application’s server runs on dual Xeon E5-2670 v2 processors, with 20 CPU cores 
before multithreading. This server allows space for a highly parallelised software design 
philosophy around the hardware, however, does not compare to modern server 
frameworks for benchmarking or generation of large program synthesis models.  

To handle the world simulation on this system, a modern, efficient SIMD – accelerated 
[143], CPU-oriented, .Net Core [144] physics engine: BEPUphysics [145], was 
incorporated, though it was also in prototype phase and was a relatively undocumented, 
UI-less, code-only engine, it came with many novel physics optimisations for highly 
parallel servers and was capable of integrating directly with the existing server program. 
This physics engine project was inherited by the main project, for direct manipulation 
within a single application. 
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Convert-Compile-Commit-Delegate 
 

To execute this source code within the same application as it was generated, at run time, 
we use a method that allows dynamic compilation and execution. As this algorithm is 
executed in C# (for improved runtime speed with repeated execution of compiled code), 
an intermediate language, code cannot be directly executed as a string, as it could in a 
fully interpreted language. 

Due to C# being non-interpreted, to dynamically generate and execute source code, live, 
required use of the Roslyn dynamic compiler [146], to create virtual  assemblies or 
Dynamic Link Libraries (DLLs), a file containing an accessible library of functions.  

To generate these DLLs, we first convert the source code into a C# compilation, we begin 
by generating a syntax tree using the code analysis library [147] from source code. This 
is then compiled and committed into a memory stream as a RAM only DLL. 

The algorithm was developed in .Net Core 3.0 preview 1, which had just released at the 
point of development of this thesis. This environment was chosen for performance[148], 
[149] server architecture designed to handle many simultaneous high bandwidth calls on 
a highly multithreaded architecture and it’s intermediate language parsing. This pushed 
the development of the program into C#, a language which is not interpreted, making 
direct code injection impossible, though this is addressed with a convert-compile-emit-
delegate process. 

Fortunately, the version of .Net Core had just introduced a prototype of this compiler, 
though early tests with this model, mass producing DLLs directly into RAM, rapidly 
filled system memory, without a process for clearing memory. Fortunately, this version 
of .Net core also just introduced collectable assemblies [150], allowing the rapid 
destruction of unused DLLs. 

 

 
Figure 28: Dynamic compilation, multiple generation process overview 
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To access these automatically generated, in-memory DLLs and call them similarly to a 
normal function, C#’s reflection API [151] is used. The memory stream is read directly 
into a context interpreter – a reflection library that is used here to expose the functions 
within the generated DLL. A delegate is generated out of the function call, which is then 
stored as a collectible delegate in an array. When referenced as a delegate [152], the 
performance of these functions are nearly identical, at run-time, to the original code of 
the application. This algorithm is multithreaded with performance linear to core count. 

To accommodate multiple functionalities, several functions are implemented within a 
single file, resulting in a three-dimensional data structure—specifically, an array of two-
dimensional arrays. This design necessitates modifications in the execution of the genetic 
algorithm, as the variable length of each function requires that a separate genetic 
algorithm be applied for crossover on each function.  

The outcome of this algorithm (Figure 28) is an entirely new algorithm for genetic 
programming, a 2D Geometric-Push evolution for source code, capable of: ‘if’, ‘else’, 
‘for’, ‘while’, recursion, access to all APIs, automatic creation and registration of 
variables and control over multiple data types, with relative language agnosticism and a 
method for generating and executing code within a single application.  

 

Web Client Architecture 
 

The main server application runs on a .Net Core 3.0 MVC [153] server architecture 
(Figure 29). This architecture was chosen as it is designed for website and web-
applications and can handle very large data throughput and processing for scalable 
hardware implementations, allowing easy communications to multiple sources.  

The application uses the MVC architecture to feed a web page, which is used to allow 
access to the server from multiple simultaneous external sources. This web page is a 
simple HTML page with a text box input and a text area output which automatically 
updates its content against the server’s output, allowing commands to be executed from 
the web host and feedback to be returned. This allowed a live update of the state of 
execution of the core AI and allowed the generated source code files to be dumped as 
text to the web client. 
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Figure 29: Agent and Server Host Architecture 

 

SignalR Hub 
 

The server communicates to external clients as both a generic web page spinner and 
Server-Sent-Events [154] host using ASP.NET Core SignalR [155], allowing 
unidirectional data transmission without polling from the server, without an explicit bi-
directional port input for the web page. This also allows input to be handled by a 
controller in the MVC server, allowing data to be more safely parsed. The same 
infrastructure is used for the Unity-based client, which  has an implementation of a Core 
SignalR transceiver [156], allowing the two different output mediums to share the same 
SignalR hub, reducing the processing overhead on the server to a single, common 
implementation. 

The web host can execute a series of commands: 

• Start physics and agent simulation, 
• Manual termination of current simulation, 
• Construct new, empty generation of agents with randomised initial constraints, 
• Construct, destroy, get, or set agent at position X, 
• Breed agent X with agent Y, 
• Run evolutionary process with X number of agents for Y generations to resolve 

equation Z, 
• Run with crossover settings: 

Depth based variance– Utilising a similar technique to Geometric Semantic 
Grammatical Evolution [111], we can vary the likelihood of mutation in accordance with 
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the indentation depth of the resultant source code. The current depth that a gene operates 
in the resultant source code may be proportional to the mutation likelihood. 

Removal – a ratio for the likelihood per generation of removing a line of code at a 
geometrically dependant random location within the genome. 

Insertion - a ratio for the likelihood per generation of inserting a new line of code at a 
geometrically dependant random location within the genome. 

Normalised random – to simulate the outcome of more complex subsets of genes at 
crossover, the resultant output of a crossover event may be partially normalised or 
randomly deviated, allowing the result to either be a direct inheritance or, with a set 
likelihood, given a slight deviancy from the original value. 

Manual garbage collection – due to the core AI’s reliance on high volume, high churn 
rate RAM usage, with large numbers of relatively large data objects as loosely coupled 
DLLs, a manual request for batched finalizers and garbage collection may become 
necessary in very large-scale execution runs. This is applicable where automatic garbage 
collections fail to reclaim at a high enough rate to match RAM usage alone. This only 
occurs in large parallel execute implementations, where many agents are run for many 
generations. 

 

Main Thread & Schedulers 
 

Upon requesting execution of either the evolutionary process or the main simulation, a 
new thread is instantiated which controls the execution process. This thread lasts for the 
entire duration of the execution of the requested process and handles scheduling, client 
requests, thread spooling and data handling. 

When executing the core AI independently, the thread divides the number of agents into 
the number of virtual cores, allocating a new thread for each virtual core to evenly 
distribute workload, generating a new C# file for each of their allocated agents according 
to the GLGPPS construction framework. These files are then executed following the 
convert, compile, emit, delegate sequence and benchmarked.  

The main thread then executes a deep copy of the data of each thread’s genetic sequences, 
due to the main matrix being a complex data object. This is done by directly serialising 
a memory stream over the original data, into the main genetic data matrix, directly 
overwriting the previous generations genetic data with the latest generations. It then 
assigns the breeding order according to the result of the benchmarks and assigns the next 
generation of agent controlling threads. After a pre-set number of generations or on the 
occurrence of a termination event, the main thread returns the agent with the highest 
scoring benchmark. 

When executing the simulation, this thread starts a slow schedular, a long running polling 
thread between the web server project and the child simulation project, allowing breed 
requests to be identified in the simulation. The polling thread then instantiates a series of 
threads and divides the requests against the number of virtual cores in the CPU, to breed 
the genetic sequences of these agents together, using the same processes as executing the 
AI independently, though without any benchmarking and only for the agents who had 
been requested explicitly to be generated. This thread then sets the matrix in the 
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simulation project, holding the delegates pointing to the generated DLL’s and directs 
them to each agent’s new DLL. This thread and its polling thread run until manually 
terminated. 

 

Algorithm Overview 
 

The GLGPPS algorithm represents source code as a structured sequence of genetic 
information, where each gene corresponds to a single line of code. A scaffold system 
translates integer-encoded genes into valid source code by using the first allele to select 
a predefined template and subsequent integers to populate variable fields. This modular 
representation decomposes a program into discrete elements that maintain syntactic and 
semantic integrity. 

The core genetic algorithm applies gene-level operators including crossover, mutation, 
insertion, and removal. Crossover exchanges entire genes between parent agents to 
sustain structural consistency, while mutation is performed at both the allele and gene 
levels. The push mechanism and correction routines based on sequence alignment on 
variable-length genetic sequences, ensure compilation and coherence. 

The process is integrated into a centralized server architecture implemented in C#.NET 
Core. This server manages the evolution of agents, simulation of terrain and physics, and 
real-time client communication. By centrally processing genetic operations and 
simulation data, the system supports automated source-code generation, execution, and 
subsequent modifications in a collaborative virtual environment. 

This defines an approach not yet seen by the GP community; however, while this appears 
like a generic architecture for software problems, this algorithm still fails to completely 
address Michael O’Neill and Lee Spector’s ‘Open Issue’[126] or Yampolskiy’s principal 
argument against genetic program inference [125] – it’s trapped within the confines of 
regression and has exponential processing requirements for linear increases in problem 
complexity. Utilisation of hard coded or automatically inferred code snippets and 
alternative evolutionary mechanisms and method for automatically defining the 
appropriate layers to mitigate this partially are explored in Future Work. 
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Chapter 5. Evaluation 
 

This chapter evaluates the Gene-Level Geometric-Push Program-Synthesis (GLGPPS) 
algorithm, assessing performance in comparison to established benchmarks, identifying 
strengths and limitations, and demonstrating applicability in both traditional program 
synthesis tasks and creative domains. The chapter begins by outlining the experimental 
setup and the scope of evaluation. It then reports results across a range of benchmarks: 
classical search problems such as OneMax and Single-Point Hill Climbing, the Helmuth 
and Spector program synthesis suite, artificial life simulations, and a live co-evolutionary 
SuperCollider music generation system. The chapter concludes with a discussion of the 
results and the limitations of this evaluation. 

 

Limitations: The versions of GLGPPS tested in the following benchmarks do not utilise 
classical optimisation strategies or alternative ranking algorithms. The following 
experiments use a simple elitest ranking. However, GLGPPS is compatible with a range 
of optimisation and search space optimisation strategies for classical genetic algorithms, 
including prolific strategies in comparative benchmarks such as tournament selection. 

This version of GLGPPS demonstrates a novel method for program synthesis. It does not 
aim to surpass compilation speed, accuracy or completion over existing methods, nor 
does it attempt to resolve arbitrary program synthesis.  

 

5.1: Experimental Setup 
 

Benchmarking GLGPPS as a program synthesis tool, a series of experiments are 
presented from existing benchmarking standards across the field: 

OneMax [73] tests the performance of the algorithm at searching an allele-level fitness 
landscape. This algorithm searches for the largest possible sum of a bitstring: to evolve 
a series of values from a random initial state into a series which consists entirely of ones. 
A brief assessment is also performed on the Needleman-Wunsch correction algorithm for 
OneMax. 

Single-point Hill Climbing, a single, consistent target value is given across all tests, no 
inputs are given. This test is simple but a classical exploration for genetic systems to 
demonstrate speed and accuracy of convergence. 

Helmuth and Spector’s benchmark suite [7], [157] for program synthesis algorithms, 
derived from an introductory computer science textbook [158] and a series of 
benchmarking challenge used originally for automatic program repair [159], the current 
standard for performance benchmarking in this field. This suite provides a collection of 
algorithmic problems as a standardised series of input values given as inputs to the 
program synthesis algorithm and a series of expected output values. A program is scored 
on the number of successful completions from a large testing set after completing a 
restricted training set. This paper stresses that program synthesis algorithms are widely 
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variable in operation and method, using program success as a metric, though also supplies 
parameters. This benchmark is used only for the input and output terminals operational 
in this version of GLGPPS. 

Artificial Life explores the algorithm in an artificial life simulation, to explore generated 
code complexity in an explicit fitness scenario given variable parameter. 

SuperCollider Music Generation (Autopia) analyses GLGPPS as a music generator, in 
a language independent of the host platform, working with humans as part of a co-
evolutionary music generation artefact. 

 

Experiment 1: OneMax 
 

This experiment uses Bremermann’s OneMax [73] algorithm in which each allele match 
between a candidate and the target string increments the score. Our goal is not to optimize 
OneMax itself, but to use it as an abstract testbed for GLGPPS to test the evolutionary 
functions ability to converge. 

As GLGPPS operates at both the allele and the genome level independently, functionally 
working on the search space in two dimensions, it justifies testing convergence speed of 
the crossover method as a baseline. This implementation does not look to optimise 
OneMax but explore the quantitative relationship of the fixed length allele per variable 
length gene search for a 2D (Gene-Level) representation of a genetic sequence due to the 
unconventional representation of GLGPPS. 

This algorithm assesses the genotype of the agents, but no compiled phenotype is 
assessed in this experiment. This algorithm is therefore directly analysing the crossover 
for allele-level complete alignment. As this algorithm constructs from a library with 𝑁𝑁 
values, rather than binary, we also look at an example with 10 possible values for the 
integer, again looking to identify a solution of all-ones, to represent a realistic heuristic 
search space. 

Parameter Setting 
Search OneMax 
Run count 3 
Agent count 800 
Generation Maximum 100 
Bitstring Length 𝑛𝑛 =  (20,30,40 … ,150) 
Mutation Ratio 2% 
Injection Ratio 1% 
Variable modifier Mutation 3%, Injection 3% 
Starting length = target length 

Table 1:genetic algorithm parameters for ONEMAX Benchmark experiment 

 

Figure 30 graphs the results for a progressive series of searches in increments of 10 values 
to solve. This demonstrates a search for both binary and decimal search spaces for these 
increments, demonstrating compute change for variable lengths of the scaffolding library. 
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Whan analysing the results for the number of generations taken to solve this set number 
of binary allocations, an exponential relationship is generated for both scenarios: 

 

  Binary   10-scaffold library   
Curve:  𝑦𝑦 = 3 ∗ 1.02𝑥𝑥   𝑦𝑦 = 3 ∗ 1.03̇𝑥𝑥 
R2 value: 0.96   0.97 
F statistic: 775   346 
Y-intercept: 3.55 ± 0.056  3.1 ± 0.108 
 

Table 2: Comparison of curve regressions of Figure 30 
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Figure 30: OneMax for N-Alleles. Blue: Binary search, Red: 10-value allele search 
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Figure 31: OneMax for N-Alleles. Blue: no correction, Red: Needleman-Wunsch 
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This binary search fit (red and blue dotted lines in Figure 30) is consistent among genetic 
operators and standard genetic OneMax implementations [4, 160-163], reflecting similar 
exponential convergence behaviour. This exponential increase in search complexity 
against linear increase indicates that Michael O’Neill and Lee Spector’s ‘Open 
Issue’[126] and Yampolskiy’s principal argument against genetic program inference 
[125] will persist in this algorithm, even in best-case scenarios.  

As the length of the genome increases, the likelihood of detrimental mutation increases. 
As the ratio of correctly assigned variables increases, the likelihood of beneficial 
mutation decreases and the likelihood of a necessary allele mutating increases. Therefore, 
the number of generations leading to convergence generally increases proportionally to 
the length of the genome for this genetic operator. These results confirm a core limitation 
of line-level genetic operators: as genome length increases, the chance of necessary 
alleles mutating rises, driving exponential growth in required generations. 

This method is still utilising a cumulative frequency ratio (Figure 15) with large 
variability and an overflow mechanism for the first genome proportional to the scaffold 
library length. As gene length, library size and integer distribution should vary 
heuristically between models, further benchmarking does not appear likely to be 
utilitarian, however recognising the trend and distribution of outcomes will likely remain 
consistent regardless of these factors. 

Following the indication that source code can still be successfully written when given 
appropriate heuristic approaches or environments with viable hill climbing search spaces, 
more heuristic methods were introduced for specific use-cases. 

 

Needleman–Wunsch Alignment for OneMax: 
 

To evaluate the effect of re-alignment on convergence, we repeat the OneMax benchmark 
using a Needleman–Wunsch–based crossover operator. Testing the impact of crossover 
alignment on OneMax, identical parameters to the binary search of the previous 
experiment are given and the crossover mechanism is replaced with the Gene-level 
Needleman Wunsch algorithm. 

Table 3 lists all GA parameters; the only change from the previous OneMax run is the 
activation of Needleman–Wunsch alignment. 

Parameter Setting 
Search OneMax Needleman-Wunsch 
Run count 3 
Agent count 800 
Generation Maximum 100 
Nodes 2 
Bitstring Length 𝑛𝑛 =  (20,30,40 … ,150) 
Mutation Ratio 2% 
Injection Ratio 1% 
Variable modifier Mutation 3%, Injection 3% 
Starting length = target length 
Needleman–Wunsch Alignment ON 

Table 3: genetic algorithm parameters for Needleman-Wunsch experiment 
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Figure 31 shows that convergence curves with and without alignment coincide, both 
following 𝑦𝑦 =  3 · 1.02^𝑥𝑥: no significant difference is observed from the use of the 
Needleman-Wunsch algorithm in an elitest-ranking OneMax search. This may be 
because OneMax alleles are highly similar and the elitist rank‐selection preserves only 
top performers, alignment rarely reorders genes—and thus offers no convergence 
advantage (Figure 32). 

 

Curve:  𝑦𝑦 = 3 ∗ 1.02𝑥𝑥 
R2 value: 0.947 
F statistic: 1017 
Y-intercept: 3.55 ± 0.056 

Table 4: Curve regression of OneMax results Figure 31 

 

When genes of identical lineage align around a removed gene, they produce one of two 
outcomes, assuming no further mutation (Figure 32). As alleles are too self-similar to 
enforce strong alignment at the gene level, including this implementation, there is no 
significant change in search, both producing the same curve ( 𝑦𝑦 = 3 ∗ 1.02𝑥𝑥). Selection 
methods other than elitest ranking may benefit from a correction algorithm like 
Needleman-Wunsch, however this is not explored in this thesis. 

 

 
Figure 32: Demonstration of Needleman-Wunsch producing outputs identical to gene-wise selection. 

 

Given its exponential cost and lack of observed gain, the alignment step is omitted from 
subsequent. Future implementations may look away from Elitest fitness and may see 
benefit from this algorithm. 
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Experiment 2: Unit Test Harness 
 

This section implements a unit-test harness to validate GLGPPS’s ability to generate 
functionally correct code for simple mathematical problems. A pair of simple coding 
exercises are implemented to demonstrate functionality and completion given simple 
problem spaces: Hill climbing towards pi and three-value addition. 

 

Hill Climbing 
 

This experiment I a test to converge on an irrational number, allowing an exploration of 
speed, accuracy and algorithmic conjugation of GLGPPS with a restricted maths library. 
Agents are scored on performance and bred to select for the best performance. This 
scenario supports gradient descent as a search, as a single maximum exists in a clean 
gradient fitness explicit landscape.  

When generating before unused variable removal is implemented, this algorithm proved 
to be susceptible to genetic bloat (large genetic sequences and output code which could 
be achieved with shorter statements), if-statements which can never trigger, new 
variables which are never used and low value manipulation of values which could be 
applied in a single operation. This is not uncommon to linear-genetic program-synthesis 
algorithms [84], [125].  

 

 
Figure 33: Fitness over generations: 

5 simulations demonstrating rapid convergence, 100 agents per generation.  

 

Initial tests of this algorithm were against explicit fitness functions and did not implement 
templating. They were run to complete mathematical and algorithmic tests of increasing 
complexity, successfully with rapid convergence where the solution was solvable, though 
not outside the expected outcomes of other GP systems.  

Figure 33 gives an example of this convergence, demonstrating fitness per generation on 
a series of experiments attempting to solve f(x) = Pi. In this experiment the fitness was 
only rewarded up to 0.9 for result accuracy, with the 0.1 additional score overhead 
allocated for shorter code solutions beyond perfect completion.  
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Figure 34 demonstrates an example output code stub for the algorithm from these 
experiments using a simple math scaffold library (Figure 37). This code block is an 
example of the entire generated code including its wrapper, as emitted and reflected by 
the compile-reflection system.  

This experiment took a form of Unit Test [164], [165] against mathematical functions, 
generally irrational numbers and standard regression problems. This approach allows for 
the simple construction by humans, of a test-driven-design lead automatic collaborator. 

These results confirm that scaffold design critically impacts both convergence speed and 
output readability. Currently this is a manual process, but these tests demonstrate that an 
automatic system which can isolate which lines in a library are likely to be useful and 
assign a weight to them. This would allow a system to automatically determine its own 
use case and select an appropriate library, functionality which would be critical in 
potential integration as a collaborative programmer. 

 

 

 

 

 

 

 

Figure 34: Example code output attempting to solve: 

 f(x) = Pi 

 

Tests were then executed to assess the impact of mutation, insertion and removal on a 
species which had no variance in genetic length. This explored a scenario in which 1000 
agents were executed for 100 generations. The results clearly demonstrate the 
significance of tuning mutation, insertion, and removal ratios, with both the highest and 
lowest mutation ratios providing the average lowest scoring results. We can anticipate 
that the optimal ratios are likely strongly dependant on the search space. 
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The results (Figure 35) demonstrate that a combination of mutation, removal and 
insertion outperforms each element independently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following this, a stress test was run, executing 10,000 agent delegates each with 300 
lines of code in under 50ms to execute. It should be noted that stress test was against the 
execution of the delegates, not against the generation of agents, which varies on method 
of generation and length of agent. 

This prototype was published [166] as a C#.net core auto-coder without a templating 
mechanism.  It was clear the algorithm did not necessitate C#, so a variable library 
functionality was written for the algorithm, which allowed it to swap between languages 
and output a text file directly. 
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Figure 35: Fitness after 20 generations, demonstrating the impact of mutation. 
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Simple Code Exercise Solving 
 

Moving beyond standard hill climbing towards a standard variable, the algorithm is 
submitted to a series of unsupervised, simple coding tests to resolve simple maths 
problems using a source code format. 

The AI was given access to a short, simple maths scaffold library (Figure 37), with 500 
agents per generation, using an elitist selection algorithm, breeding only between the top 
10 scoring agents per generation. Fitness is determined by successful completions of a 
set of 1000 unit tests with input parameters run against a known working solution. This 
is likely to be a detrimental ranking system for the search space [167], but offers a simple 
method to validate the plausibility of the model as an auto-coder for arbitrary coding 
tasks. 

This approach makes use of the dynamic compilation framework and directly tests 
compiled code to see if the output matches the output of a compiled, correct solution, 
live. This utilises the convert, compile, commit, delegate loop (Figure 28), using 
dynamically generated DLLs. 

 

Simple Addition 
 

The AI was tested against the task of resolving the sum of three input values (Figure 36), 
initially as integers between 1 and 10. The unit test was a simple one-line expression, 
though the scaffold library in use (Figure 37) did not give solutions for operations with 
more than two values, so would require a multiple line solution to resolve. 

 

 
Figure 36: Three input sum unit test 

 

This experiment would consistently resolve in either one or two generations. An example 
of a complete solution before unused variable removal can be seen in Figure 38, which 
successfully resolves in the first 3 lines, but holds an additional 5-line non-coding region. 
An interesting observation is the use of the return statement: this statement appears 
frequently and separates clear coding and non-coding regions in experiments which 
resolve in a shorter number of generations. 

This demonstrates that GLGPPS can locate solutions to simple problems in this 
environment, though the two-generation solutions generally resolved due to 0 being one 
of the input integers, allowing the first generation to succeed 10% of the time with an 
intermediate solution which only returning the sum of two of the input values. 
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Figure 37: Example simple maths scaffold library 

 

inputA += inputB; 
inputA += inputC; 
return inputA; 
double b = 0; 
inputA += Math.Pow(39, inputB); 
inputB -= output; 
double c = inputA; 
return output; 

Figure 38: Successful “Simple Addition” task completion 
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These unit-test results demonstrate GLGPPS’s rapid problem‐solving capacity in 
constrained domains, but highlight the need for automated scaffold pruning to mitigate 
code bloat. Scaffold design critically impacts both convergence speed and output 
readability. GLGPPS locates correct solutions rapidly in simple domains but suffers 
scaffold-induced bloat and unused‐variable overhead. 

 

Experiment 3: Helmuth & Spector’s Benchmarks: 
 

We assess GLGPPS on a subset of Helmuth & Spector’s asynchronous I/O benchmarks, 
comparing completion rates and code legibility against published G3P results [168]. This 
is the first benchmark suite and, at the time of writing this thesis, the only standard for 
direct analysis of source code outputs for genetic program synthesis. 

As program synthesis is a developing field, very few implementations with documented 
benchmarks against a standardised framework exist. Helmuth and Spector’s benchmark 
suite aimed to address this, but adoption is still limited. Benchmarking will be compared 
to Spector and Helmuth’s results where appropriate with an emphasis on legibility. 
Helmuth and Spector suggest benchmarking primarily on completion; however, this 
thesis looks to analyse human comprehension of code using quantitative frames. 

For these experiments, GLGPPS utilises a heuristic program synthesis: the templating 
mechanism does not currently operate with an automatic scaffold pruning framework, so 
models use an arbitrary longer library (Figure 37), and a specific heuristic sample of this 
library derived for common solutions to the specified problem. Notably, the benchmark 
G3P model also uses a human-selected library of nodes for construction. 

This version of GLGPPS is also not designed for string manipulation: strings may be 
returned but string manipulation is not assessed. String manipulation as a functional 
library however can be added to GLGPPS, including, as suggested in Helmuth & 
Spector’s initial paper, addressing regression towards a correct string output using “a 
Levenshtein distance [169]  (a measure of string edit distance) as the fitness function”, 
however this remains out of the scope of this project. 

Gene injection and removal algorithms are active in these tests, so number of final genes 
may differ from starting genes.  

For all experiments: 

Agent population: 800 
Mutation Ratio: 2% 
Injection Ratio : 1% 
Success modifier: Mutation: 3%, Injection: 3%  
Failure Modifier: Reset to: (Mutation: 5%, Injection: 3%) 
Fitness Function: # accurate matches of input to output for pre-solved set 

Table 5: genetic algorithm parameters for all GLGPPS benchmark experiments 



 

86 
 

Fitness for the following experiments is given by the number of correct outputs from the 
Helmuth and Spector benchmark Suite – a library of inputs and expected outputs for a 
range of computing tasks. 

Library size: a generic maths “larger library” is provided for all experiments, and a 
specific manually selected “heuristic” library is used in “heuristic models”. For the 
“heuristic models”, lines of code which can be demonstrated to complete the problem are 
selected as the library. 

Measures for “lines of source code” include the wrapper function not included in code 
excerpts. Graphs for completion for each test can be found in Appendix B. 

Results analysed are taken from the first working solution in any experiment which 
solves all given tests. 

 

IO 
 

We evaluate GLGPPS on the simplest I/O task: returning the sum of two inputs (an 
integer and a float). A heuristic library with only addition, return assignment scaffolds 
was also tested. 

 

Parameter Setting 
Search IO 
Library Size 40 (Larger library) & 4 (Heuristic) 
No. starting genes 10 

Table 6: starting parameters for 'IO' benchmark experiment 

 

GLGPPS generated a successful solution in the first generation, on both large library and 
heuristic models (Figure 39). 

 

inputB += inputC; 
output = inputB; 
return output; 

Figure 39: GLGPPS first solution for “IO” Benchmark test 

    

Table 7 compares cognitive complexity, maintainability index, cyclomatic complexity, 
and code-length against G3P. Both systems yield equivalent functional and structural 
metrics—differing only by one extra line in GLGPPS due to brace syntax in C#. 
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    G3P  GLGPPS Difference 
Cognitive complexity:  0%  0%  0% 
Maintainability Index:  76  75  -1  
Cyclomatic Complexity:  1  1  0 
Lines of Source code:  5  6  +1  
Lines of Executable code:  4  4  0 

Table 7: Readability metrics comparison of ‘IO’ experiment results for G3P and GLGGPS 

 

Behaviour-wise, results between GLGPPS and G3P are identical. G3P derives a higher 
score despite identical functionality due to Python’s syntax not including terminating 
bracers. Despite using different scaffold libraries, GLGPPS matches G3P’s cognitive and 
cyclomatic complexity on this trivial task - the +1 line in GLGPPS stems from C# block 
delimiters; G3P’s Python output omits braces. This result confirms that, for this simple 
I/O tasks, scaffold design does not impair readability or conciseness—validating the 
minimal overhead of our templating approach. 

 

Median 
 

This section evaluates GLGPPS on the ‘Median’ I/O task, which returns the middle of 
three inputs. It also explores variation in readability metrics and their applictionin 
between benchmark and tested algorithms. 

 

Parameter Setting 
Search Median 
Generation Maximum 100 
Nodes 40 (Larger library) & 5 (Heuristic) 
No. starting genes 10 

Table 8: parameter settings for 'Median' benchmark experiment 

 

With the full library, GLGPPS failed to converge within 100 generations. Using the 
heuristic library, a correct solution emerged at generation 78.  

With a heuristic sample, a sub-set of the scaffold library (Figure 37) with only 
comparative and return statements, a complete solution was synthesized after 78 
generations (Figure 40: GLGPPS first solution for “Median” Benchmark test).  
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output = inputA; 
if (inputB >= inputC){ 
       if ((inputC >= output) && (output >= inputA)) 
       { 

return inputC; 
} 
else if (inputA >= inputB) 
{ 

        return inputB; 
} 

} 
else if (inputB >= output) 
{ 

return inputB; 
} 
else if ((inputA >= inputC) && (output > inputB)) 
{ 

return inputC; 
} 
return output; 

Figure 40: GLGPPS first solution for “Median” Benchmark test 

 
 
    G3P  GLGPPS Difference 
Cognitive complexity:  40%  80%  +40%  
Maintainability Index:  58  60  +2  
Cyclomatic Complexity:  3  8  +8  
Lines of Source code:  19  25  +6  
Lines of Executable code:  12  11  -1  

Table 9: Readability metrics comparison of ‘Median' experiment results for G3P and GLGGPS 

 

The comparison of results between G3P and GLGPPS suggest substantial improvements 
to human comprehension of code in the G3P model. This result is worth analysing as it 
raises a major contention in human comprehension against automatic comprehension 
measures. 

 

def evolve(in0, i0, i1, i2): 
    res0 = int() 
    i0 = max(min(max(in0, in2), divInt(in1, +min(abs(i1),int(3.0)))), 
min(in0, divInt(min(mod(divInt(in2, i2), i0), (max(i2, in0) * min((in0 
- divInt(-abs(i1), max(i1, i1))),+abs(in0)))), +min(abs(i1), 
int(3.0))))) 
    b1 = b1 
    b1 = b2 
    while not False: 
        res0 = i0 
        if loopBreak > loopBreakConst or stop.value: 
            break 
    loopBreak += 1 
    return res0 

Figure 41: G3P example solution for “Median” Benchmark test 
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The G3P solution (Figure 41) demonstrates one complex single line solution and a series 
of statements and assignments which have no functionality. This can be generalised into 
a 2-line solution Figure 42. 

 

res0 = max(min(max(in0, in2), divInt(in1, +min(abs(i1),int(3.0)))), 
min(in0, divInt(min(mod(divInt(in2, i2), i0), (max(i2, in0) * min((in0 
- divInt(-abs(i1), max(i1, i1))),+abs(in0)))), +min(abs(i1), 
int(3.0))))) 
return res0 

Figure 42: G3P after removal of functionally redundant code 

 

This solution would score a maintainability index of 76 and cyclomatic complexity of 1, 
implying a more conventionally readable solution with these measures however, this 
solution demonstrates substantial horizontal density, in a single line: min, mod, max, abs 
and integer conversion of a new float are all called with complex logic nesting.  

A simple modification of the linting algorithm was run on the G3P solution for this 
problem, identifying some improved readability but retaining substantial line density. 

 

   G3P with lint G3P  GLGPPS Difference 
Max Horiz. density:  241  241  52  -189   
Operands:   18  33  21  -12   
Operators:   26  38  20  -18   
Brackets & Bracers:  46  48  27  -21   
Max. logic nesting: 9  9  4  -5   

Table 10: Horizontal density analysis of 'Median' Benchmark results 

 
It is worth addressing that significant horizontal density without necessity does not follow 
good coding conventions [170]; a human programmer producing clean code should 
atomise new variable assignments which minimise the functionality of an individual 
operation. Horizontal density is therefore not clearly quantified by automatic complexity 
calculations which derive line count but not horizontal as part of the quantitative metric. 
 

Small or Large 
 

This algorithm returns: 

This experiment evaluates GLGPPS on a threshold‐classification task: return “small” if 
x < 1000, “large” if x ≥ 2000, and “” otherwise. Because the baseline implementation 
cannot construct literal strings, the tokens “small” and “large” were pre‐injected into the 
scaffold library as return‐value constants. 

Table 11 lists the genetic‐algorithm parameters. Two scaffold libraries were tested: a full 
“larger” library of 40 nodes and a minimal “heuristic” library of 5 nodes containing only 
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assignment, comparison, and return templates. All runs used an elitist selection with gene 
injection/removal enabled. 

 

Parameter Setting 
Search Small or Large 
Generation Maximum 100 
Nodes 40 (Larger library) & 5 (Heuristic) 
No. starting genes 10 

Table 11: parameter settings for 'Small or Large' benchmark experiment 

Given these parameters, this algorithm failed to identify a complete solution, however 
many partial completions were derived. 

Models both with and without mathematical derivation techniques both became trapped 
in the local maxima of using a default value (of zero) as an upper and lower boundary. 

Support values of 1000 and 2000 are added as part of the library for this problem, with 
them the algorithm converges consistently (Figure 43). The G3P algorithm utilises the 
same heuristic mechanism for this problem. Results converge into uniformly better 
scoring outputs than the benchmark, however these results do not attempt to converge 
numbers 1000 or 2000. 
 

inputB = 1000; 
inputC = 2000; 
if (inputA < inputB) 
{ 
    return -1; 
} 
else if (inputA >= inputC) 
{ 
    return 1; 
} 
return output; 

Figure 43: GLGPPS first solution for “SMALL OR LARGE” Benchmark test 

 
Table 12 compares readability and complexity metrics against G3P. GLGPPS achieves 
lower cognitive complexity (20 % vs. 62 %), lower cyclomatic complexity (2 vs. 8), 
and dramatically reduced horizontal density, at the expense of four extra scaffold lines. 
 
These results demonstrate that embedding problem‐specific constants in the scaffold 
library is essential for convergence. GLGPPS’s templated output is significantly more 
readable than G3P’s, as shown by a 42 % reduction in cognitive complexity and an 
189‐point drop in maximum horizontal density. 
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    G3P  GLGPPS Difference 
Cognitive complexity:  62%  20%  -42%   
Maintainability Index:   57  62  +5   
Cyclomatic Complexity:  8  2  -6   
Lines of Source code:  13  17  +4   
Lines of Executable code:  12  8  -4   
Max Horiz. density:   131  26  -105   
Operands:    36  11  -15   
Operators:    55  9  -46   
Brackets & Bracers:   74  8  -66   
Max. logic nesting:  9  1  -8   

Table 12: Maintainability & cognitive complexity statistics for "Small or Large" experiment 

 

Sum of Squares 
 

This experiment measures GLGPPS’s ability to compute the sum of squares for all 
integers in [1, n], a task with no smooth fitness gradient and requiring a multi-line loop 
solution. 

Parameter Setting 
Search Small or Large 
Generation Maximum 50 
Nodes 40 (Larger library) & 6 (Heuristic) 
No. starting genes 10 

Table 13: parameter settings for 'Sum of Squares’ benchmark experiment 

This is a problem with a specific, multiple-line solution which does not provide a clear 
route for gradient descent. The results for this search align with this type of search: a high 
failure ratio with a range of low scoring local maxima, with a sudden jump to a 
completion in a single generation. 

This test failed 8 complete runs of 50 generations (421 total generations) before a 
successful completion (Figure 44) was found. 

 
for (double a = 0; a < inputA; a++) 
{ 
    inputC += Math.Pow(a, 2); 
    output = inputC; 
    output += Math.Pow(inputA, 2); 
} 
return output; 

Figure 44: GLGPPS first solution for “SUM OF SQUARES”  

 
The sudden jump to a solution after many failures reflects the non-gradient nature of this 
loop-based task. GLGPPS’s scaffolded code is both shorter and structurally simpler than 
G3P’s, reducing horizontal density by 142 points and cutting cyclomatic complexity in 
half. These results validate that templated, multi-line constructs can yield more 
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maintainable arithmetic algorithms, even when convergence is sporadic and reliant on 
heuristic library design.  
 
    G3P  GLGPPS Difference 
Cognitive complexity:  2 (25%) 1 (10%) -1 (15%)   
Maintainability Index:  61  68  +7     
Cyclomatic Complexity:  3  2  -1     
Lines of Source code:  11  10  -1     
Lines of Executable code:  11  6  -5      
Max Horiz. density:   177  35  -142   
Operands:    37  14  -23   
Operators:    56  9  -47   
Brackets & Bracers:   96  8  -88   
Max. logic nesting:  14  3  -11   

Table 14: Maintainability & cognitive complexity statistics for "Sum of Squares" experiment 

 

Results 
 

Results of GLGPPS appear comparable to existing benchmarks for GP-derived program 
synthesis algorithms in terms of completion for the given tests. 

It should be noted that GLGPPS does not currently have a method for automatic scaffold 
selection, hence the Large-Library and Hueristic models being separate, but results 
indicate comparable outcomes in terms of generated functionality to G3P. 

 

Experiment Attempts Generations 
to solution 

Maintainability 
Inex 

Cyclomatic 
Complexity 

Cognitive 
Complexity 

IO 1 1 62 2 0 (0%) 
Median 1 40 61 11 8 (80%) 
Small or 
Large 

1 22 62 2 2 (20%) 

Sum of 
Squares 

8 21 68 2 1 (10%) 

Table 15: Summary of GLGPPS Heuristic model benchmark solutions 

 

GLGPPS produces many lines of code, with clearly atomised behaviours, opposed to 
G3P solutions, which generate many complex single-line statements. 

There may be scenarios where complex single-line searches are preferred but for the 
extents of this experiment, the general maintainability and comprehension of generated 
code is improved in GLGPPS. 

One of the substantial benefits to the many-line approach is improved compatibility with 
linters and static code analysis tools: a simple unused-variable removal algorithm 
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demonstrated substantial improvement to lines of code and maintainability of code in the 
output file. This would not be as impactful for algorithms which produce complex single-
line solutions which introduce many new operands in the same line. 

Case Study: Sum of Squares 
 

To demonstrate how GLGPPS operates and as an example of output comparison to G3P,  
“Sum of Squares” is selected as a case study. This is due to be being ranked as a more 
difficult problem to resolve [168], with similar success rates for both algorithms and a 
substantial demonstration of the change in output due to the unused variable removal in 
the case of GLGPPS. 

Analysing the impact of the removal of unused variables (Figure 45), this algorithm 
reduces the lines of executable code by 60% and total lines of code by 45% in this 
solution, with no modification to functionality.  

 

for (double a = 0; a < inputA && 
itterations < maxItterations; a++, 
itterations++) 
{ 
    double b = output; 
    double c = inputA; 
    inputC += Math.Pow(a, 2); 
    inputB += Math.Pow(output, 2); 
    output = Math.Pow(a, 2); 
    output = inputC; 
    inputB = Math.Pow(inputC, 2); 
    output = inputC; 
    inputB = Math.Pow(a, 2); 
    output += Math.Pow(inputA, 2); 
} 
return output; 
 

for (double a = 0; a < inputA; a++) 
{ 
    inputC += Math.Pow(a, 2); 
    output = inputC; 
    output += Math.Pow(inputA, 2); 
} 
return output; 
 

Figure 45: GLGPPS first solution for “SUM OF SQUARES” Benchmark test before (Left) and after 
(right) unused-variable removal 

 

    Before unused variable removal After 
Cognitive complexity:  2 (20%)    1 (10%) 
Maintainability Index:  72     68 
Cyclomatic Complexity:  3     2 
Lines of Source code:  18     10 
Lines of Executable code:  15     6 
Table 16: Readability metrics comparison of ‘Sum of Squares’ experiment results before and after linter 

 

This removal process uniformly improves maintainability and complexity measures 
against the initial output.  
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Figure 46 demonstrates the G3P solution for the same benchmark. The same issues raised 
in this section are present across the benchmark solutions. See Forstenlechner’s thesis 
[168] for a complete library of G3P solutions. 

This solution distinctly creates complex statements with many in-line operators for a 
single procedure. Due to the length of these statements, there are three lines of code which 
break PEP8 conventions for line length [171], with lines of 178, 147 and 95 characters. 
This format of construction is endemic in Grammatical Evolution algorithms. 

G3P solutions also produce a large number of magic numbers [170], which ideally should 
be replaced with (named) constants, or at least emphasise evolving solutions which create 
named variables and use said variable rather than evolving magic numbers. This is 
especially pressing for solutions which are not discovered with intent: evolving magic 
numbers often creates solutions which solve a given test or series but solve with a maths 
formula defined through a representation of highly specific numeric values which have 
been located through gradient descent. 

Comparing GLGPPS and G3P in these terms, we can see that enforcing a limit on the 
number of operands in a single line helps to remove the likelihood of horizontal bloat in 
a single expression without compromising either comprehension or completion. We can 
also see improvements of encapsulation of boundary conditions. 

GLGPPS in the Helmuth & Spector experiments also prevent the use or creation of 
numbers unless a direct instantiation of a value into a new variable or the use of common 
values (such as 0, 1 or 2) inside single line operations ought to also be applied, which 
supports readability against the benchmark. 

These principles, when applied, may lead to more vertical solutions, however the vertical 
bloat is suppressed more actively due to the removal of unused variables. Notably, 
horizontal bloat is not mitigated through this algorithm, but an alternative linter may 
support cleaner code. 

 

def evolve(in0, i0, i1, i2): 

    res0 = int() 

    res0 = divInt(( +max(in0, abs(int(6.0))) + abs(abs(max(i2, 
(abs(max(i1, ( divInt(+( in0 + ( +min(abs(in0), int(3.0)) + 
divInt(in0,i2) ) ),i2) * in0 ))) * in0 )))) ),int(6.0)) 

    i0 -= i0 

    if i2 > min(( ( +( i2 - ( mod(+( +in0 + in0 ),+( int(979.0) + 
int(95880.0) )) * int(640.0) ) ) + -i2 ) + ( +int(0.0) - i2 ) ), 
abs(int(97.0))): 

        i0 -= abs(int(6.0)) 

    else: 

        res0 = divInt(( abs(int(970497.0)) + ( int(6.0) + 
int(511889.0) ) ),abs(abs(int(6.0)))) 

    return res0 
Figure 46: G3P solution for “SUM OF SQUARES” Benchmark test, for comparison, source: [168] 
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For this problem, against the benchmark G3P model, we can conclude the following: 

1. GLGPPS produces more maintainable code: 
a. less likely to generate magic numbers  
b. less likely to breach length guidelines 
c. less subject to horizontal bloat 
d. more compatible with linters to support code cleanliness 

2. GLGPPS can converge working solutions to benchmark problems in a similar 
number of searches. 

 

Beyond GLGPPS, one significant finding in this research is that current maintainability 
calculators which emphasize complexity as an expression of indentation depth or count 
number rather than complexity of operators will calculate complexity of a solution which 
is not representative of the difficulty for a human to interpret an algorithm’s behaviour.  

These algorithms are not designed for program synthesis, assuming most conventions are 
already followed to guide a human towards a lower cognitive complexity. Program 
synthesis should remain critical on how complexity is being quantified, especially if 
automatic maintainability calculation is brought into the fitness function of an algorithm. 
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Experiment 4: Artificial Life 
 

Exploring a synchronous task, to test GLGPPS’s capacity for human interaction and 
implicit fitness (no explicit fitness function but a fitness requirement imposed by the 
environment itself), a loosely guided, rapid adaption scenario is presented: an artificial 
life simulation.  

A series of experiments were applied using the GLGPPS algorithm, including a 
Template-Based variant and a Needleman-Wunsch variant of GLGPPS, as a behavioural 
controller for a virtual species in a virtual environment. These experiments analysed the 
automatic evolution of behavioural nuance and ecological niche under different 
environmental conditions and population limitations. This implementation made use of 
multiple function implementation: functions with different behavioural controls which 
are selected dependant on a template-based mechanism [123] and evolve independently. 

A series of sub-experiments explores implicit fitness with and without human interaction. 
This will explore if, following biologically inspired theory on complexifying genetics, 
an implicit fitness environment might modify the evolutionary procedure. 

Agents in this experiment evolved as when a pair of agents moved near each other, and 
one agent had reached a breeding countdown timer set first at birth and re-set after 
successfully breeding. 

This sub-experiment also analysed human interactions with the virtual species, analysing 
the role of human co-evolution with the artificial species in a Mixed-Reality context. 

 

Sub-Experiment 4.1: GLGPPS behaviour controller for Artificial Life 
 

The first sub-experiment ran GLGPPS, without templates. Several sub-experiments were 
run in this category, exploring: the underlying evolutionary mechanisms the agents 
exhibited the dynamics of the system and the speed of adaptation to changing 
environments. 

Disabling the templating mechanism for these tests simply meant running the algorithm 
using a single function, without a hard-coded template linking together a sequence of 
functions in the behavioural controller. 

The mutation, insertion and removal ratios are carried forward from previous 
experiments.  

Agent population: 800 
Mutation Ratio: 2% 
Injection Ratio : 1% 
Fitness Function: (Implicit) survival 

Table 17: parameter settings for ‘Artificial Life’ experiment 

 

In the first generation, all agents are born with the same generic, hard coded genetic 
sequence. This sequence constructs its phenotype into a simple finite state machine 



 

97 
 

(Figure 47) which simply instructs the agent to follow simple behaviours depending on 
the values passed in from the physics engine about that agent’s local environment. A hard 
coded starting genotype is used to minimise population fall off when a fully random 
population is generated on the first generation. 

 

 
Figure 47: hard coded first generation.  

Left: Genetic matrix. Right: generated phenotype using genetic matrix. 
 

This default behaviour prioritises predator avoidance, moving in the opposite direction 
to a predator if they are within a detection radius of that predator. It then checks its hunger 
value, prioritising explicit survival, it heads in the direction of the nearest available food 
source. If it is not in imminent threat of termination, it will either attempt to locate a 
breeding partner if it is old enough to push a breeding request, or it will simply herd by 
moving towards the centre of the nearest K-means cluster. 

 

This sub-experiment demonstrated the principle of Occam’s razor, as agents tend towards 
either a direct one-line solution to survival or a bloated solution which prioritises single-
line behaviour, using the size of the genome to protect the behaviour from mutation and 
removal procedures. 

 

Sub-Experiment 4.2: TB-GLGPPS 
A template mechanism was produced for agents in this experiment, moving the agents’ 
genetic data structure from 2D to 3D to allow multiple functions to operate on each agent 
simultaneously. This operates as a series of functions which are generated for each agent. 

A generic, hard-coded template is created, which controls which, when and to what extent 
each of these functions activate and what power they have over the steering mechanism. 
This is the ‘template’ of the ‘template-based’ mechanism. 

Each agent in the following Template-Based experiments had 6 chromosomes, where the 
first 5 chromosomes are used to construct complete functions in the same way the 
GLGPPS experiments operate: outputting a desired location in 3D space which is 
converted into a direction. The final chromosome is used as a weighting matrix for the 
templating mechanism, derived directly from the first two genes only. 

The first gene of the final chromosome is read directly into the weighting matrix from 
the genetic sequence itself and therefore is subject to crossover and mutation. The 
weighting matrix is used in the Augmented Finite State Machine (AFSM) element of the 
Template-Based operator (Figure 48) to control which genes are utilised at any one time 
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and what there weighting is towards the final target location. This is utilised in the agents’ 
steering mechanisms, allowing evolution to optimise when which triggers should activate 
based on agents’ sensors and states as well as what to do when those triggers are active. 

 

Figure 48:Psuedocode of Augmented Finite State Machine operator in TB-GLGPPS 
templating mechanism 

1. gene_data = chromosome[6].gene[0] 
 

2. if Predator_distance < gene_data[0] then 
3.     targets.add( behaviour[0]) 
4. if front_sensor_hit and (hit.distance < gene_data[1]) then 
5.     targets.add( behaviour[1]) 
6. if hunger > gene_data[2] then 
7.     targets.add( behaviour[2]) 
8. else if breedCount_Down > gene_data[3] then 
9.     targets.add( behaviour[3]) 
10. else 
11.     targets.add( behaviour[4]) 

 
12. target = weightedAverage(targets) 

 
 

 

This algorithm allows us to explore a more strongly guided evolutionary approach, 
combining a broad human template that the program synthesis algorithm constructs 
around.  

Generally, this species would minimise values for all behavioural scenarios of the 
template except for one and replace the behaviour of that function with a one-line solution. 

Scenarios were presented which forced more complex behaviour, such as the introduction 
of a predator and strict limitations on breeding, which did produce more complex 
behaviours, but behaviour would trend towards the simplest solution that could survive, 
minimising function loss from mutation while subsisting. Population dynamics would 
see a rapid loss in population followed by a stabilisation around a simple effective 
phenotype (Figure 49). 

  



 

99 
 

 
Figure 49: Comparison of population dynamics after initialisation: 

TB-GLGPPS with modified starting gene   (green) 
TB-GLGPPS with expanded spawning region  (black) 
TB-GLGPPS with small spawning region   (brown)  
GLGPPS with small spawning region  (blue) 
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Experiment 5: SuperCollider Collaborative Music Generation 
 

The GLGPPS algorithm as a source code auto-coder, without templating, was applied 
and published as an AI collaborator for a live music performance [172], [173] to an 
audience of 36 participants. This model modified the original C# scaffolds to work with 
SuperCollider – an object-oriented music programming language and took human input 
to evolve programs that evolved sounds. This effectively converted the algorithm to 
generate SuperCollider code. 

This project output code to a program called ‘Utopia’ [174],  a Just-in-time, live-
compilation audio generation programming interface for collaborative live music coding 
performances, traditionally between human practitioners. This programming interface 
allows users to program collaboratively together to generate music from mathematical 
formulae, which can be interpreted in a C-based code format. 

The GLGPPS algorithm utilised this format. It was given a range of simple mathematical 
function calls and object instantiation code blocks as its scaffolds, allowing the system 
to utilise, generate and manipulate mathematical representations of waveforms through 
nested function calls and statement construction. 

This algorithm generates supercollider code on the host C# .net Core server, rather than 
in Supercollider itself. To output to the client, this algorithm makes use of its webpage 
output, transmitting across a local network to display to a client device which is running 
an instance of Utopia. A standalone application was used to copy the output from a 
webpage to the application, live. An alternative implementation was also generated 
which inherited directly from the base C# project. Both implementations copied code 
from the web interface to the Utopia environment at typing speed to produce an illusion 
of a human-like programmer. 

In generating audio, a fitness function becomes necessary, which is where the human 
audience element is introduced. This algorithm was designed to take human input as a 
fitness function, applying a score relating to audio preference of sounds. The genetic 
algorithms for each result were ordered by the score received from the human participants.  

To evolve the ordered list of algorithms, a traditional elitist ranking evolution [175] 
approach was implemented. The algorithm successfully and consistently demonstrated 
an ability to converge towards consistent sound styles when reinforced towards them by 
human feedback. This was a noticeable change in generated tone within a single 
generation, which was consistent across several experiments. This persisted across 
experiments with smaller population sizes and for shorter sound sample durations. 

Sounds generated during prototyping were often multi-tone sounds, compromising of 
both a high pitch and a low pitch frequency, generating a more vocal sounding hum when 
optimising against the preference of an audience. 

One of the sub-experiments inverted the order of the list, effectively inverting the search 
space to create a sound with the weakest human preference. This approach generated 
either no sound or very sudden, very loud sounds. Demonstrating this form of 
convergence against the human selective pressure for an intuitive inverted preference 
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gives evidence that the algorithm functions as intended on the sample sizes utilised 
against human selection for this medium. 

The number of agents in a generation was reduced to 6 and the sample length was reduced 
to 10 seconds, making a full generational sample last a single minute. The size and 
duration were reduced in preparation for a public facing experiment. Models with this 
number demonstrated effective convergence while also having a sample size low enough 
that the human participants could identify a clear change in sound between generations. 

 

 
Figure 50: Photograph of Autopia.in public performance 

 

Generated code would, rather than forming single-line solutions, form longer, complex 
solutions 

The complete environment was labelled ‘Autopia’. This environment was utilised as part 
of a live-coding performance at the Academy of music and Theatre Arts, at Falmouth 
University. During this performance, the algorithm was left to run for an hour with direct 
human input from the audience. The output of the algorithm, the oscilloscope of the 
output signal, the Utopia interface and participants responses were projected onto a large 
screen (Figure 50). 

The algorithm was successful in undergoing steady evolution towards various 
identifiable sounds that were explicitly distinguishable to the human participants as more 
pleasing than the initial population. The human population selected gradually changing 
sounds, but consistently converged around the more vocal ranges. 

After the hour period, two human live coding performers joined the audio generation 
process, utilising Utopia’s collaborative networked interface for a further 30-minute 
period. This demonstrates the algorithms’ potential as an adaptive artistic medium and 
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as a collaborator to professional performers. Some of the sounds generated by the 
algorithm were adopted by the performers for their own work in other projects. 

To further demonstrate this use case, a later performance was demonstrated and 
published [176], independently, using the same algorithm for an online audience with 
some success: 

“The resulting performance was in many ways a lot more immersive and engaging and 
received great feedback from the audience via the live stream chat. Many audience 
members enjoyed the novelty of an AI performer in a festival where the other performers 
were human, however the sounds that were generated by the AI, and particularly the 
sometimes-unpredictable nature of what was heard, were also received positively.” 

This experiment also direct integration of generated code into the performers’ own work. 

This series of experiments evidences the algorithm can evolve useful, practical solutions 
in human-guided environments without specialist input or even programming domain 
knowledge and can operate with dramatically varied template libraries and coding 
languages.  

The code generated in these experiments was also utilised effectively by human 
musicians, integrating generated code into their own live-coding as part of the 
performance. As this implementation was in 2019, this algorithm pre-dates Larg-
Language-Models for live coding for audio. 

Findings from this implementation are as follows: 

1. GLGPPS can generate code in a human coding pipeline. 
2. GLGPPS can operate in multiple languages. 
3. GLGPPS evolves effective, useful, positively received solutions to implicit 

fitness problems in a timeframe which meet human needs. 
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Chapter 6. Conclusions 
 

This thesis introduces a new genetic algorithm from program synthesis, GLGPPS, which 
enforces line-by-line code scaffold construction, producing lines of finite, pre-defined 
length and complexity with comparative success in terms of code construction.  

A simple redundant code filter is applied as part of this algorithm which demonstrates 
substantial improvement of generated source code. The scaffolding construction 
mechanism of this algorithm supports code cleaning more effectively than benchmark 
algorithms, with substantial improvements to human comprehension which complying 
more consistently with coding conventions. 

Needleman-Wunsch re-alignment and Template-Based heuristic search patterns are also 
explored in thesis to demonstrate both compatibility and utility of the core algorithm in 
associated search spaces. 

 

6.1: Contributions to knowledge 
 

This thesis show, for the first time, that: 

OneMax: 

1. Needleman-Wunsch does not demonstrate notable improvement in elitest ranking 
searches but does increase algorithmic complexity. 

Hill Climbing: 

1. GLGPPS demonstrates the capability to converge into simple, syntactically correct 
source code with results comparable to benchmark algorithms for completion. 
GLGPPS demonstrates improved human comprehension over current benchmarks. 
 

Helmuth & Spector benchmarks (against current standard G3P solutions): 

1. GLGPPS produces more maintainable code: 
a. less likely to generate magic numbers  
b. less likely to breach length guidelines 
c. less subject to horizontal bloat 
d. more compatible with linters to support code cleanliness 

2. GLGPPS can identify working solutions to benchmark problems in a similar 
number of searches to benchmark evolutionary program synthesis models. 
 

Artificial Life: 

1. GLGPPS can generate and utilise multiple functions in a single script, including 
generated functions from within a generated function. 

2. GLGPPS can effectively evolve an Ockham’s razor to subsistence solutions in 
implicit fitness, Artificial Life contexts. 
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3. GLGPPS can consistently synthesize engaging code for use with humans, 
demonstrating utility in creative practice with generated code being utilised as 
part of a human workflow. 

 

SuperCollider: 

1. GLGPPS can generate code in a human coding pipeline 
2. GLGPPS can operate in multiple languages 
3. GLGPPS evolves effective, useful, positively received solutions to implicit fitness 

problems in a timeframe which meet human needs 

 

6.2: GLGPPS as an Auto-coder using automatically assigned 
fitness 

 

As a framework for auto-coders, the most significant contribution this approach brings 
is the human interpretation of the source code generated, as the formatting style and 
explicit access to standard functionality is closer to that of the human programmer than 
existing methodologies in the field.  

As demonstrated in the initial prototype, GLGPPS can apply hard coded statements into 
an automatically defined framework to generate syntactically complete, executable, 
standalone files following standard C-based programming syntax paradigms to create 
source code. 

This model, at its core, follows the traditional gradient descent of genetic algorithms 
when applied against an explicit fitness function, successfully converging rapidly against 
simple hill climbing tests, though with very limited success in against unguided unit-test 
completions. 

As this algorithm optimises its search space through an exposable genetic algorithm, this 
search methodology can utilise many alternative breeding methodologies seen in 
alternative GA frameworks: metaheuristic or re-combinatorial methods [27], [177], [178]. 

As this method is also generating source code freely, it only needs to be primed with 
decompiled code snippets. These samples may be from any reference language, the 
algorithm does not explicitly rely on live reflection to generate code, only to execute live 
in C#. A version of this algorithm could be generated in a fully interpreted language, for 
example, JavaScript, which does not rely on an explicit imported dynamic compiler, 
reflection, or delegates. Depending on the specific syntax of some languages, there may 
need to be some modification to the (current) interpreter. 

The method also allows the likelihood for entry in the code snippet scaffold library to be 
modified. This allows a more heuristically optimised search space if the approximate 
likelihood for each entry to occur are known. For example, if it is anticipated that a 
terminating bracer ‘}’ may be more likely to be called than a ‘for-loop’, the appearance 
ratio may be set higher for the bracer. 
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As the evolutionary algorithm at the core of this system is modular and exposable, it can 
be replaced or augmented with alternative evolutionary methods, which may provide 
improved results in the context of a source code auto-coder. 

Due to relying on genetic algorithms at its core, GLGPPS is limited by Yampolskiy’s   
identification of evolutionary auto-coder’s shortcomings [125]. It will exponentially drop 
off in its efficiency of exploration of its search space as it explores linearly increasing 
complexity solutions. This will introduce a need for heuristic approaches or explicit 
intervention modifying the approaches to solve long form, complex problems. 

It is notable that further adoption of biologically inspired optimisation techniques may 
yet prove beneficial in further reducing the impact of this limitation: an argument built 
on a 2003 essay by Spector [179], “Even in work that appears quite distant from biology 
on the surface, one often finds arguments that aspects of the proposed techniques were 
motivated by some hither-to under-appreciated feature of biological systems. Insofar as 
the adaptive power of biological systems still vastly outstrips that of any currently 
existing human-engineered computational system this is quite reasonable, and it is a 
trend that we should expect to continue.” 

 

6.3: GLGPPS as a Creative Automatic-Programmer Using 
Collaborative, Human-Mediated Fitness 

 

The main contribution of the use case of this algorithm from the SuperCollider 
collaborative music generation program is as a collaborative agent and as a proof of 
concept towards an auto-coder capable of rapid evolution with enough speed to 
demonstrate a noticeable change in behaviour during human interaction. GLGPPS 
demonstrated its ability to adapt to human input as a fitness function in real time at a rate 
fast enough to demonstrate clearly identifiable changes in its phenotype from a shared 
group experience during the performance and from an individual’s training input during 
prototyping. This extends to demonstrating a single phenotype at a time to an audience, 
where the audience can recognise change in the phenotype and, as a cohort, changing the 
phenotype through selection in accordance with a collective preference. 

As the experiment only demonstrated phenotypes which were played for ten second 
intervals, the algorithm would generally produce either brief fluctuating tones or very 
simple melodies; the experiment was run to explore human collaboration and use as a 
tone generator for collaboration with human musicians, rather than to analyse the 
algorithms’ actual ability to generate music. 

It is anticipated that this algorithm will again hit Yampolskiy’s principle [125] in 
attempting to generate larger samples beyond simple repeating melodies for larger 
phenotype duration samples. It is possible that re-utilisation of the templating mechanism 
may partially address this potential limitation, though the limitation and the solution 
spaces have not yet been explored in this context. 

One of the more significant aspects of the AI audio collaborator project was that 
SuperCollider was running on a completely independent, pre-compiled, Java based 
executable. As this operated on a text-only output, the convert-compile-commit-delegate 
loop was completely ignored. The output was automatically typed using simulated 
keypresses into the SuperCollider environment, so we can infer that: 
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• GLGPPS can write for multiple languages: The C# server environment 
successfully demonstrated the generation of SuperCollider code, demonstrating 
compatibility with different paradigms and programming languages, though 
further experimentation would allow a more robust exploration of limitations. 

• GLGPPS does not require reflection to operate: GLGPPS does utilise reflection 
to execute natively within C#, but does not require explicit reflection calls when 
writing for external environments. This algorithm, when written in languages 
which are interpreted, should also not require reflection, though this experiment 
is yet to be conducted. 

• GLGPPS can converge fast enough to be compatible with a non-specialist human 
audience when applied under suitable circumstances.  

• GLGPPS can be used as an augmentation to alongside human programmers, by 
modifying existing code in a live coding environment, with some limitations. 

To clarify why this system passes mutual goal attainment but fails at understanding and 
progress tracking: the objective and measurement of both human and AI agents in this 
system is the same, to optimise human feedback against a human audience according to 
quantitative feedback. Even task co-management is present as the collaboration is 
towards the same source code, but only the human is pre-emptive of the AI’s output and 
the AI will generate its code independently of the human collaborator. 

The lack of pre-emption, in general, is a side effect of the core basis of the algorithm: the 
genetic approach is inherently reactionary and may only appear to be pre-emptive. This 
is emphasized by the fitness function being driven by the participants: the participants 
will drive change in the species explicitly, with a level of pre-emptive direction, but the 
species can only drive change implicitly as a reflection of adaption lead by the human 
interactors. The human interactors may anticipate a change and steer evolution towards 
or away from it, while the evolutionary process itself has no explicit process of 
anticipation. 

 

6.4: GLGPPS & TB-GLGPPS Under Implicit Fitness as a 
Controller for Artificial Life Simulations 

 

These results are what we expect due to the balance between the mutation ratio stability 
and the environmental pressures the species undergoes, where species which mediate 
between the two pressures retain a more optimal fitness than a species which optimises 
into either pressure. For the Artificial Life environments explored in this model, the 
environmental pressures will vary over time, meaning the optimal search space is 
consistently moving, making convergence less likely and optimisation inconsistent in a 
gradualistic evolutionary model. 

This results in short phenotypical solutions that specialise in genotypical stability at 
crossover. Due to these solutions converging to resolve their phenotype at the beginning 
of their gene sequence, or primarily utilise indentation and code depth as a form of 
redundancy for crossover stability, the geometric optimisation mechanism does not have 
the opportunity to impact the optimisation of search space in these agents. 
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The short working phenotypes of the solutions species evolved are tied to the implicit 
fitness function of the environment. These typically resolve the genotypically simplest 
solutions that are survivable in the working ecosystem. Ecological survivability and 
genetic functionality loss due to mutation create an environment which trends towards 
simple solutions, which to some extent mirrors behavioural adaptations in biological 
ecosystems. 

Despite the short length of solutions, there are complex emergences in behaviour of the 
virtual species in these experiments. These produce interactions between sub-species or 
distinct common behavioural patterns which are clearly identifiable in all longitudinal 
experiments that do not undergo an early extinction event. These behaviours are usually 
survival strategies, such as food seeking or clustering mechanisms, though do not usually 
explicitly involve the location or utilisation of other agents, despite producing visually 
complex interactions between agents. It appears that the complexity of the evolved 
behaviour is dependent on the environment itself: if the environment requires multiple 
factors for survival, such as predator evasion or food seeking behaviours, they are more 
likely to occur, as these pressures increase in severity, the likelihood of them appearing 
increase. 

The genetic systems within these agents tend to display structural genetic strategies 
which parallel biological genetic structures and are clearly observable across the various 
solutions when observing generated solution spaces. Compiled genetic structures 
observed demonstrate: 

• Non-coding regions, which demonstrate explicit non-executable regions, likely 
evolved as an evolutionary strategy to mitigate detrimental mutation in longer 
genetic structures. 

• Homology and traceable speciation as common genetic patterns remain within 
the species for several generations beyond initial construction of distinct 
phenotypically significant genes.  

• Gene amplification, where phenotypically significant genes are replicated 
multiple times through some species genomes. 

• Punctuated equilibrium, following events which trigger speciation, usually from 
major events which alter the survivability of the population and lead to distinct 
species to evolve or become dominant. 

Human co-evolution in these environments occurs where a feedback cycle is produced 
between the evolution of the species and human interactors. The experiments have 
demonstrated that this can occur within a longitudinal experiment with and without 
prompt or when intentional pre-existing intent to interject into and modify phenotypical 
behaviours in a virtual species exist. 
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6.5: Discussion 
 

The aim of this project was to explore co-evolution with human interactors using a novel 
source-code generating algorithm. 

GLGPPS successfully provides a novel evolutionary mechanism which can generate 
more conventionally readable source code for human workflow integration, capable of 
evolving fast enough, in the right context, to adapt to human interaction, in real time.  

This algorithm expands on existing methods for evolutionary algorithms by opening 
methods for internal compilation within intermediate language environments and 
compatibility for more complex coding structures in generated source-code, such as for-
loops and if-statements. However, this algorithm ultimately holds the same limitations 
of all contemporary evolutionary algorithms which map programs linearly to genetic 
sequences, ultimately leaving this approach as optimal within contemporary automatic 
source code programming algorithms only for specific use cases. 

The impact of institutional lockdown from Coronavirus slowed development and 
implementation, the direction of experimentation was also modified to comply with 
updated health and safety regulations, ultimately changing the direction of thesis entirely. 
The experiments explored in this thesis identify clear use cases of GLGPPS with 
repeatable, successful outcomes in human-facing, creative practice. 

GLGPPS is compatible with many potential genetic operators, which may demonstrate 
variable speeds and ratios of completion. Due to the genetic underpinning, we see similar 
results to existing evolutionary algorithms for automatic code construction in terms of 
logarithmic performance drop off over search space size. 

Against the contemporary algorithms which utilise neural networks, GLGPPS does not 
require large scale database and can operate with much smaller scale systems; it can 
prototype much faster without training but is limited to niche use-cases that are 
compatible with hill-climbing search-spaces due to the nature of genetic systems. In 
general, GLGPPS is not as effective as some contemporary algorithms for traditional 
programming challenges which have been developed during this thesis for complex 
solution spaces. Codex [180] and its implementation in GitHub Copilot [133] have been 
developed in this time frame, which utilise a generative pre-trained transformer from 
natural language representations which can operate with a higher level of abstraction than 
classical genetic searches. This makes Codex far more successful in most classical 
programming problem spaces, largely due to pre-training from human programming, at 
the cost of substantially larger operating cost. 

Further work could explore larger scale experimentation for benchmarking or larger 
population co-creative practice or improve search space optimisation and 
complexification strategies which may mitigate some of these issues for certain use-cases 
and may open this algorithm to more utilitarian research. 
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6.6: Summary of Conclusions 
 

GLGPPS outperforms contemporary algorithms in terms of evolutionary program 
synthesis algorithms for human comprehension and demonstrates comparable 
completion to benchmark algorithms for solving benchmark problems.  

This improvement in human comprehension implies a substantial paradigm shift in the 
approach to program synthesis – namely, a change to the interpretation of BNF grammars 
to restrict line length, stacks to control variable, indentation and specific states (such as 
for loops). 

This novel, language-agnostic program synthesis algorithm can be replicated in 
interpreted languages and languages with reflection for the “convert-compile-commit-
delegate” loop. It can also generate source code within the host application or external 
applications, when provided an alternative feedback loop mechanism, such as 
synchronous models which demonstrate successful generation from many-interactor, 
single-interactor, workflow and rapid feedback models. 

This algorithm can efficiently explore search spaces with a clear gradient towards a single 
point but becomes exponentially more expensive in linearly increasing search spaces. 
This is the basis of Yampolskiy’s argument, and there is no evolutionary algorithm which 
has escaped this – it likely stems from the nature of genetically inspired algorithms 
themselves. Modifications could be made to the algorithm and the search space to 
optimise for maximum complexity against search cost, but the algorithm will inherently 
be limited to exponential search cost against linear problem space expansion. Notably, 
there is no existing solution to exponentially increasing search cost in linearly increasing 
problem space from any field. 

The introduction of a Template-Based system demonstrates how heuristic methods can 
both significantly improve or hamper optimisation models without manual refinement. 
Both the least stable and most complex models of GLGPPS tested were Template-Based 
heuristic models under different conditions. The templating mechanism has shown to be 
successful at increasing the likelihood of the development of complex agents, though the 
simplest solution models consistently dominate generated populations with this 
algorithm. 

The Needleman-Wunsch algorithm has demonstrated no significant change to elitest 
ranking searches, but future work may demonstrate benefits to many-agent simulations 
with medium to large gene length species. 
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6.7: Future Work 
 

The purpose of this thesis was to introduce and explore a novel evolutionary algorithm. 
In doing so, this project has left a range of potential further research opportunities related 
to the algorithm’s potential use cases, further optimisation and potential modification. 

 

Automatic code de-compilation 
 

To automatically construct a heuristic search space, a system which parses human-written 
source code could be implemented to generate a new library of code scaffolds to utilise 
in the auto-coder. This could be achieved by determining the functionality of a line of 
code and breaking down into its constituent parts, stripping out explicit variable use and 
setting and replacing them with the main scaffold framework. 

As this system would allow the algorithm to construct a library using the target 
applications own code, it would be more likely to derive code fitting the format and 
generic architecture of the target application. This would increase the speed and general 
success of the algorithm within its applicable search space, though construction of this 
method would need heavy heuristic optimisation. 

This system could be combined with an algorithm which determines, from a pool of 
applications, which type of problem is being solved to construct a weighting matrix for 
a scaffold library to aid automatic construction. This could automatically determine the 
context of the application to select from existing scaffolds and hierarchically organise 
snippets against the likelihood of being relevant. 

 

Complete linter integration and Automatic code optimisation  
 

For a human programmer, intelligent code completion [181] systems will automatically 
detect and indicate compiler warnings that are not terminatory. Applying the same 
automatic corrections, removal of redundant code snippets and removal of loops and 
trigger statements which can never trigger, dramatically reducing build-up of non-coding 
regions, particularly in auto-coders deriving from variable length genetic algorithms. Due 
to the source code generation format of this algorithm, it is directly compatible with 
existing, intelligent code completion systems. 

 

A Hierarchy of Automatically Defined Functions 
 

An expansion the Scaffold-Based approach would be to automatically apply method 
extraction and code-re use through refactoring, while preventing self-referential calls. 
This would be applied by adding a function call to the newly generated function as a new 
entry to the snippet scaffold library itself and therefore allowing the re-use of common 
functionality. Effectively, this would be the automatic formation of scaffolds, using 
multiple lines of a genetic sequence, into a scaffold library. 
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An intuitive downside to this approach is the explicit requirement to increase search 
space to explicitly explore random assignments of refactorizations in an already high 
dimensional search space. 

 

Artificially Enforced Punctuated Equilibrium 
 

One of the models not explored in this thesis is the use of artificial punctuated equilibrium, 
taking the form of a temporary inflation to mutation ratios. This would be simple to 
implement into the framework used in this thesis, however it was not adopted as the rate 
of evolution appeared to occur at a high enough rate to avoid the need for heightened 
mutation. The initially proposed implementation would assess modifications to the local 
geometry and enforce an increased mutation ratio to any breeding in a region surrounding 
the modification. The hypothesis being that it would enable more rapid exploration of 
the behavioural search space, making the species more capable of adapting to sudden 
ecological changes which would otherwise terminate the species. 
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Chapter 7. Appendix 
 

7.1: Psuedocode 
 

Figure 51:  2D Needleman-Wunsch algorithm  

1. Input: 2D integer arrays seq1, seq2; target as a 2D integer array 
2. Output: Aligned target 
3.  
4. // Initialization 
5. R ← new Random   

6. linesMin ← min(|seq1|, |seq2|), linesMax ← max(|seq1|, |seq2|)   

7. seq1Larger ← (|seq1| > |seq2|)   

8. preExistingContent ← range(1, linesMin); nSpaces ← linesMax   

9. theOrder ← ""; GenerateArrangements(preExistingContent, nSpaces, [], 0,  
theOrder)   

10. arrangements ← split(theOrder, ".")   

11. bestScore ← −∞, bestID ← −1 
12.  
13. // Process each arrangement 
14. for each arrangement in arrangements do 
15.     if arrangement ≠ "" then 

16.         myData ← parse(arrangement)  // list of ints 

17.         scoreTotal ← 0; currentFunction ← [] 
18.         for k from 0 to linesMin − 1 do 
19.             if myData[k] ≠ −1 then 
20.                 if seq1Larger then   
21.                    n ← length(seq1[k]); m ← length(seq2[myData[k] − 1])   
22.                 else   
23.                    n ← length(seq1[myData[k] − 1]); m ← length(seq2[k]) 
24.                 Set matchScore = 1, mismatch = −1, gap = −1 
25.                 Initialize scoreMatrix[0..n, 0..m]:   
26.                    scoreMatrix[i,0] = i * gap, scoreMatrix[0,j] = j * gap 
27.                 for i = 1 to n do   
28.                    for j = 1 to m do   
29.                       match ← scoreMatrix[i−1,j−1] + (equal ? matchScore :  

mismatch)   
30.                       delete ← scoreMatrix[i−1,j] + gap; insert ← scoreMatrix[i,j−1]  

  + gap   
31.                       scoreMatrix[i,j] ← max(match, delete, insert) 

32.                 (x,y) ← (n, m); currentLine ← [] 
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33.                 While (x > 0 or y > 0) do   
34.                     if (x > 0 and scoreMatrix[x,y] = scoreMatrix[x−1,y] + gap) then   
35.                         with probability 0.5: prepend element from  

seq1 (or seq1[myData[k]−1]) to currentLine; x ← x − 1   
36.                     else if (y > 0 and scoreMatrix[x,y] = scoreMatrix[x,y−1] + gap)  

                    then   
37.                         with probability 0.5: prepend element from seq2 (or  

seq2[myData[k]−1]) to currentLine; y ← y − 1   
38.                     else   
39.                         prepend element from seq1 (or seq1[myData[k]−1]) else from  

seq2; x ← x − 1; y ← y − 1 

40.                 scoreTotal ← scoreTotal + scoreMatrix[n, m] 
41.                 Append deep copy(currentLine) to currentFunction 
42.             else  if (R.NextDouble() ≥ 0.5 or currentFunction is empty) then   
43.                     Append deep copy(currentLine) to currentFunction 
44.          if scoreTotal > bestScore then   
45.              bestScore ← scoreTotal; bestID ← current ID; target ←  

deep copy(currentFunction) 
46.         Reset currentFunction and scoreTotal 
47. end for 
48. // Post-alignment adjustment 
49. for j from 0 to 4 do   
50.     for i from 0 to |target| − 1 do   
51.         if j not in bounds of target[i] then   
52.             if seq1[i][j] and seq2[i][j] exist then   
53.                 with probability 0.5: insert seq1[i][j] at position j in target[i]  

else insert seq2[i][j]   
54.             else if seq1[i][j] exists then insert seq1[i][j]   
55.             else if seq2[i][j] exists then insert seq2[i][j] 
56. return target 
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  Figure 52:  GLGPPS Allele to code mapping algorithm  

1. Input: 
2.  GeneticSequence: list of lists of integers (genetic code) 
3.  outputCode: string (by reference) — the script to append generated code 
4.  indentDepth: integer (by reference) — current indentation level 
5.  valuesAnnounced: integer (by reference) — count of announced values 
6.  i: integer — index for the current genetic sequence 
7.  lastAdded: integer  
8.  valueList: list of integers (by reference) 
9.  data: list of lists of strings — code scaffold templates 
10.  stack: list of integers  — variable scope stack 
11.  
12. Output: 
13.  Updated outputCode and indentDepth reflecting the appended code 
14.  
15. // Preserve the scaffold value to avoid modification 
16. scaffoldValue ← DeepCopy(GeneticSequence[i][0]) 
17. if (GeneticSequence[i][0] + 1 > Count(data)) then 
18.  return 
19.  
20. codeLength← Count(data[GeneticSequence[i][0]]) 

21. codonScaffold ← 0 

22. codonGA ← 1 

23. firstInput ←ValueFormatter( data[ GeneticSequence[i][0]][0],  
GeneticSequence[i][1],  valuesAnnounced, lastAdded, valueList, 0) 

24.  
25. // Adjust indentation for loop constructs 
26. if (data[GeneticSequence[i][0]][0] equals "for (double ") then 
27.  indentDepth ← indentDepth + 1 
28.  Call VariableScopeController(indentDepth, valuesAnnounced, stack, 

valueList) 
29.  
30. // Handle closing braces from the scaffold 
31. if (data[GeneticSequence[i][0]][0] equals "}") then 
32.  if (indentDepth < 1) then 
33.   return 
34.  end if 
35.  indentDepth ← indentDepth − 1 

36.  outputCode  ← outputCode + Indent(indentDepth + 4) + "}" 
37.  return 
38. end if 
39.  
40. if (FirstCharacter(data[GeneticSequence[i][0]][0]) equals '}') then 
41.  if (indentDepth < 1) then 
42.   return 
43.  end if 
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44.  indentDepth ← indentDepth − 1 
45.  Call VariableScopeController(indentDepth, valuesAnnounced, stack,  

valueList) 
46.  indentDepth ← indentDepth + 1 

47.  outputCode  ← outputCode + Indent(indentDepth + 3) 
48. else 
49.  outputCode  ← outputCode + Indent(indentDepth + 4) 
50. end if 
51.  
52. // Append the first scaffold input if it exists 
53. if (firstInput is not empty) then 
54.  outputCode  ← outputCode + firstInput 

55.  codonGA   ← codonGA + 1 

56.  codonScaffold ← codonScaffold + 1 
57. end if 
58.  
59. swap ← TRUE 
60. while (codonScaffold < codeLength - 1) do 
61.  if (swap equals TRUE) then 
62.   outputCode  ← outputCode + 

data[GeneticSequence[i][0]][codonScaffold] 
63.   codonScaffold ← codonScaffold + 1 
64.  else 
65.   outputCode  ← outputCode + 

ValueFormatter(data[GeneticSequence[i][0]][codonScaf
fold], GeneticSequence[i][codonGA], valuesAnnounced, 
lastAdded, valueList, codonScaffold) 

66.   codonScaffold ← codonScaffold + 1 

67.   codonGA   ← codonGA + 1 
68.  end if 
69.  swap ← NOT swap 
70. end while 
71.  
72. depthHolder ← DepthSetter(data[GeneticSequence[i][0]][codeLength - 1]) 
73. if (indentDepth > 0 or depthHolder > 0) then 
74.  indentDepth ← indentDepth + depthHolder 
75. end if 
76.  
77. // Restore original scaffold value to maintain template integrity 
78. GeneticSequence[i][0] ← scaffoldValue 
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7.2: Helmuth and Spector Benchmark Graphs 
 

 
Figure 53: Graph of  GLGPPS first solution for “MEDIAN” Benchmark test 

 

 
Figure 54: Graph of GLGPPS first solution for “SMALL OR  LARGE” Benchmark test 

 

 
Figure 55: Graph of GLGPPS first solution for “SUM OF SQUARES” Benchmark test 
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