Operationalizing Semantics from Domain Diagrams

Aakash Mor
University of the Arts London
London, United Kingdom
aakashmor @ gmail.com

Abstract—This paper introduces AMIDOL, a framework for
machine-assisted extraction of formal computational semantics
from domain-specific visual diagrams. OQur approach tackles
significant challenges in Explainable AI by converting intu-
itive graphical representations into rigorously defined executable
models. Through domain-specific ontological languages and a
unified intermediate representation, AMIDOL facilitates auto-
mated generation of actionable insights and analytical queries.
This empowers domain specialists with precise comprehension of
complex system behaviors and enables evidence-based decision-
making across various application domains.

Index Terms—Formal semantics, domain diagrams, executable
models, intermediate representation, explainable AI, model trans-
formation

I. INTRODUCTION

Visual modeling approaches have long functioned as vital
communication channels connecting domain specialists with
technical modelers. Representations such as state machines,
process workflows, system dynamics models, and network
diagrams provide intuitive visualizations of system behaviors
across multiple fields including healthcare, cybersecurity, epi-
demiology, and industrial manufacturing [1], [2]. These dia-
grammatic tools enhance understanding among stakeholders
possessing diverse technical expertise, fostering collaborative
problem resolution and system architecture. Nevertheless, de-
spite their extensive adoption, such domain diagrams often
lack precise mathematical semantics, generating considerable
challenges for computational execution, formal verification,
and cross-platform translation.

The increasing focus on explainable artificial intelligence
(XAI), transparent analytical workflows, and reliable simula-
tion environments has underscored the need for instruments
that capture both visual representations and their foundational
computational semantics [3]. Current modeling software, while
abundant in features, commonly experiences restricted in-
teroperability, inadequate formal guarantees, and platform-
dependent limitations. These constraints establish substantial
barriers for interdisciplinary cooperation, model adaptation,
and rigorous formal analysis, especially in complex multi-
domain implementations.

Specialized research communities in model-driven engi-
neering and computational biology have made considerable
advances in creating formal modeling languages including
SBML, Bio-PEPA, and multiple process calculi [4], [5].
These frameworks deliver powerful analytical functionalities
but stay predominantly inaccessible to non-specialists because

Mrunal Gangrade
JPMorgan Chase
Florida, United States
mrunalgangrade @ gmail.com

of their technical complexity and text-oriented nature. The
fundamental question remains: how to effectively connect the
expressive capacity of formal modeling with the accessibility
and intuitiveness of visual diagramming methodologies.

To systematically address these challenges, we present
AMIDOL (Automated Model Integration and Domain Ontol-
ogy Language), a semantic framework specifically engineered
for automated conversion of domain diagrams into executable,
analyzable formal models. AMIDOL operates as an opera-
tionalization platform for visual domain-specific languages by
establishing formal foundations via an intermediate represen-
tation. This methodology enables comprehensive downstream
analysis, simulation, and interoperability while preserving the
cognitive advantages of diagrammatic modeling approaches
esteemed by domain practitioners.

A primary motivation underpinning AMIDOL concerns
minimizing semantic ambiguity in domain diagrams through
extraction of consistent structural patterns and their system-
atic mapping to a standardized intermediate representation
(IR). This representation captures states, events, transitions,
and logical relationships within a mathematically grounded
structure that remains independent of particular visual syntax
conventions. Through this abstraction mechanism, AMIDOL
enables composition, verification, and uniform interpretation
of heterogeneous models across different modeling paradigms.

AMIDOL’s architectural philosophy emphasizes assistance
for both model creation and model utilization workflows. The
framework permits domain experts to construct models using
intuitive diagrammatic interfaces while enabling engineers and
analysts to reason about underlying system behaviors through
formal semantics. The integration of reward-based analysis
for inference and verification extends the framework’s utility
across operational research and decision science applications,
delivering quantitative assessment capabilities.

Ultimately, AMIDOL strives to democratize access to for-
mal modeling methodologies, improve reproducibility, and
encourage collaboration across modeling communities. By
operationalizing semantics from existing domain diagrams, the
framework establishes a practical pathway toward interopera-
ble, explainable, and trustworthy model development practices
that serve varied stakeholder requirements.

II. THEORETICAL FRAMEWORK AND RELATED WORK

The evolution of AMIDOL draws upon considerable exist-
ing research in visual modeling formalisms, semantic tech-

nologies, and model transformation methodologies. Founda-
tional techniques including statecharts, finite state machines,
and Petri Nets created structured graphical representations for
reactive systems, concurrent processes, and workflow mod-
eling [1], [2]. These innovative methods supplied mathemat-
ically rigorous semantics but required substantial expertise
for productive application and provided limited support for
contemporary tool integration needs.

In specialized application domains such as computational
biology and systems engineering, dedicated modeling lan-
guages including SBML, Bio-PEPA, and PRISM have ap-
peared to support advanced simulation and formal verifica-
tion workflows [4]. These tools offer sophisticated analytical
capabilities through well-defined semantics, but their textual
representations and domain-specific characteristics create ac-
cessibility hurdles for stakeholders lacking specialized techni-
cal training. The ongoing tension between expressive capabil-
ity and practical usability constitutes a continuing challenge
in formal modeling, particularly in interdisciplinary contexts
involving participants with diverse backgrounds.

Model-driven engineering (MDE) methodologies have en-
deavored to address these gaps through model transforma-
tion frameworks and meta-modeling approaches that automate
elements of software synthesis and simulation [6]. Tech-
nologies such as the Eclipse Modeling Framework (EMF)
and UML profiles supply structured mechanisms for model
representation and transformation, yet they frequently remain
closely associated with software development processes. This
association restricts their applicability in cross-disciplinary
domains such as public health or supply chain management
where software development paradigms may not align with
domain-specific modeling practices.

Simultaneously, ontology-based modeling and semantic web
technologies have enabled structured knowledge representation
for annotating and interpreting domain models [7], [8]. These
approaches provide valuable interoperability at conceptual
levels through standardized vocabularies and relationship defi-
nitions. However, they typically lack executable semantics and
native support for reward modeling, inference, or simulation
capabilities essential for dynamic system analysis. This lim-
itation restricts their utility in scenarios requiring predictive
analytics or performance evaluation.

Attempts to operationalize visual models through intermedi-
ate representations have been thoroughly explored in compiler
design, particularly in projects such as LLVM and IRML
[9]. These compiler technologies demonstrate the efficacy
of intermediate representations for enabling optimization and
code generation across diverse source languages and target
platforms. However, such IRs are rarely designed with domain-
specific diagrams or compositional semantics as primary con-
siderations, limiting their applicability to visual modeling
contexts where diagram structure conveys essential semantic
information.

Most existing visual modeling tools either compile to pro-
prietary simulators or generate code specific to particular
solvers, restricting model reuse and formal verification ca-

pabilities. This fragmentation creates significant obstacles for
model sharing, comparative analysis, and integration across
tools and domains. AMIDOL distinguishes itself by focusing
on semantic extraction from arbitrary domain diagrams inde-
pendent of their original modeling environments, converting
them into a unified, analyzable representation that supports
both formal grounding and runtime execution while maintain-
ing interpretability and accessibility.

By designing a flexible intermediate representation that
explicitly supports compositionality, reward modeling, and
temporal logic, AMIDOL addresses primary limitations of
previous tools. The framework combines concepts from for-
mal methods and human-centered visual design to provide a
scalable, cross-domain modeling solution. Its theoretical foun-
dations integrate elements from transition systems, process
algebras, and reward structures, creating a unified semantic
framework capable of capturing diverse modeling paradigms
within a consistent representational structure.

III. AMIDOL ARCHITECTURAL FRAMEWORK

The AMIDOL framework represents a comprehensive
methodology for extracting, formalizing, and operationalizing
semantics from semi-formal domain diagrams. It serves as a
critical bridge between visual domain modeling and executable
model semantics, enabling formal analysis, simulation, and
reward-based inference across diverse application contexts.
The architecture is deliberately modular and extensible, allow-
ing adaptation to specific domain requirements while maintain-
ing consistent semantic foundations.

A. Layered Architecture Design

AMIDOL structures its functionality into three core archi-
tectural layers that cooperate to transform visual diagrams into
executable models. The initial layer, designated the Frontend,
accepts domain diagrams defined in Visual Domain-Specific
Ontological Languages (VDSOLs), customized for specific
target domains such as healthcare, cybersecurity, or manufac-
turing. Each VDSOL incorporates both syntactic definitions
for diagram elements and semantic mapping rules connecting
these elements to formal constructs in the intermediate rep-
resentation. This separation allows domain experts to work
with familiar visual notations while ensuring precise semantic
interpretation.

The intermediate layer, identified as the Semantic Core,
performs the essential translation of diagrammatic constructs
into a mathematical Intermediate Representation (IR) cap-
turing system dynamics, state transitions, and event logic.
This component implements transformation rules that identify
diagram elements including nodes, edges, annotations, and
spatial relationships, mapping them to corresponding formal
constructs. The Semantic Core guarantees that visual intuition
embedded in original diagrams is preserved in formal repre-
sentations, maintaining traceability between visual and formal
model perspectives.

The final layer, termed the Backend, provides support for
simulation, reward modeling (encompassing both rate and

Frontend Layer

Domain Diagrams —|
VDSOL Interface

¥ Abstract Syntax

Semantic Core
IR Translation

VIR Model

Backend Layer
Analysis Engines

Fig. 1. AMIDOL three-layer architecture showing transformation pipeline
from domain diagrams to analytical outcomes.

impulse varieties), and formal inference utilizing the IR. This
layer interfaces with external tools including model check-
ers, differential equation solvers, and stochastic simulation
engines, translating the AMIDOL IR into formats compatible
with these tools. The Backend’s modular design enables users
to select appropriate analysis techniques based on specific re-
quirements, whether involving temporal property verification,
performance evaluation, or exploratory simulation.

B. Component Integration and Data Flow

Information flows through the AMIDOL system via a
structured pipeline maintaining semantic consistency across
transformations. Domain diagrams enter the system through
the Frontend, where they undergo parsing and conversion into
abstract syntax representations. These representations capture
structural diagram elements while remaining independent of
specific visual notations employed. The abstract syntax serves
as input to the Semantic Core, which applies transformation
rules to generate the Intermediate Representation.

The IR functions as the central data structure within AMI-
DOL, capturing complete operational semantics of original di-
agrams in mathematically grounded form. This representation
is subsequently dispatched to appropriate Backend components
according to requested analysis types. Simulation backends
execute models to generate behavioral trajectories, while veri-
fication backends examine temporal properties against models.
Reward modeling components instrument the IR with quanti-
tative measures for performance assessment.

The framework’s modular design enables seamless inte-
gration of new VDSOLs, transformation rules, and analysis
backends. This extensibility ensures AMIDOL can adapt to
evolving modeling practices and incorporate advances in for-
mal methods and analysis techniques. The clear separation
between frontend, core, and backend components additionally
facilitates maintenance and framework evolution, as modifica-
tions to one layer typically don’t propagate to others.

C. Implementation Considerations

Implementing the AMIDOL framework involves several
technical challenges requiring careful design decisions. The

Frontend must support flexible parsing of diverse diagram-
matic notations while maintaining robust error handling for
malformed inputs. The Semantic Core requires efficient al-
gorithms for pattern matching and transformation to manage
complex diagrams with potentially numerous elements. The
Backend needs adapters for various analysis tools, each pos-
sessing unique input formats and execution characteristics.
Performance considerations prove particularly important for
practical deployment. While translation from diagrams to IR
typically represents a one-time cost, efficient transformation

—> Analysis Resuliiyorithms ensure responsive interaction during model devel-

opment. Similarly, IR design must balance expressiveness with
computational tractability, enabling efficient simulation and
verification for realistically complex models. These imple-
mentation concerns have guided AMIDOL’s architectural and
component design decisions.

IV. FORMAL REPRESENTATION AND SEMANTIC
FOUNDATION

The core of the AMIDOL framework consists of a language-
agnostic Intermediate Representation (IR) specifically engi-
neered to formalize semantics of arbitrary domain diagrams.
The IR captures model operational behavior within a math-
ematically grounded structure enabling simulation, inference,
and model composition while remaining independent of par-
ticular visual syntax or domain-specific notation conventions.

A. Formal Structure Specification

The AMIDOL IR is formally defined as a 5-tuple: M =
(S,E,®,A, A), where each component fulfills specific roles
in capturing system dynamics. The set S represents state
variables, each associated with type and domain definitions
specifying possible variable values. These state variables col-
lectively define the state space of the modeled system. The set
E contains events capable of triggering transitions between
states, representing discrete system configuration changes.

The enabling condition function ® : E — P(.S) maps each
event to state sets that must satisfy specific predicates for event
occurrence. This function captures preconditions governing
event activation, ensuring transitions respect system logical
constraints. The transition logic function A : £ — L assigns
each event an expression from logic language £ describing
state updates during event occurrence. The selection of L
determines IR expressive power and can range from simple
assignments to complex logical formulations.

The timing function A : £ — R™ maps each event to
firing rates or timing values, supporting both deterministic
and stochastic semantics. This component enables AMIDOL
to capture broad spectra of temporal behaviors, from discrete-
event systems with fixed delays to continuous-time Markov
processes with exponential distributions. The combination of
these five elements creates a representation both sufficiently
general to encode diverse modeling paradigms and adequately
precise to support rigorous analysis.

TABLE I
AMIDOL INTERMEDIATE REPRESENTATION COMPONENTS

support domain-agnostic analysis while maintaining traceabil-
ity to visual designs. The IR can target various execution envi-

Component Mathematical Notation Semantic Purpose

ronments, including probabilistic model checkers, differential
equation solvers, and discrete-event simulators, depending on

analytical objectives and model characteristics.
The transformation process incorporates validation checks

discrete ensuring semantic consistency and identifying potential am-
activate pioyities in original diagrams. These checks assist domain
Specify predicates determin- €XPerts in refining models by highlighting underspecified com-
ing when events can occur ponents or logical inconsistencies. Transformation feedback

serves as an important mechanism for improving model quality

events modify state variables and guaranteeing formal semantics accurately capture intended

State Variables S ={s1,82,...,8n} Define system configuration
parameters with specified
types and value domains

Events E ={ei,e2,...,em} Represent
occurrences that
state transitions

Enabling Condi- & :E — P(S)

tions
based on current state

Transition Logic A:E — L Define rules describing how

Timing Function A : E — Rt

Govern event occurrence tim- system behaviors.
ing through rates or delays

B. Semantic Expressiveness and Composition Operations

The AMIDOL IR supports compositional semantics through
well-defined operations for combining IR instances. Two IR
models M and M3 can be composed into M3 by identifying
shared state variables and synchronizing events across models.
This compositionality facilitates model modularity and reuse,
allowing complex systems to be constructed from simpler
components. Composition formal properties ensure composite
model behavior can be derived from constituent behaviors.

Each IR instance can be interpreted as a transition system
where states evolve based on event triggers and associated
logic. The framework supports both continuous-time and
discrete-time semantics, with selection dependent on modeling
context and analysis requirements. This flexibility permits
AMIDOL to accommodate diverse application domains with
different temporal characteristics, from discrete manufacturing
processes to continuous biological phenomena.

Critically, the IR demonstrates Turing-completeness un-
der reasonable assumptions regarding the logic language £
(specifically when £ supports recursion or memory opera-
tions). This theoretical property guarantees that any com-
putable process expressible through visual domain diagrams
can be accurately captured and executed via AMIDOL. The
IR’s Turing-completeness establishes fundamental expressive
power while providing theoretical assurances about modelable
system classes.

C. Diagram to Model Transformation Process

Domain diagrams created using VDSOLSs undergo semantic
mapping to the IR through transformation rules encoded in
VDSOL definitions. These rules identify diagram elements in-
cluding transitions, nodes, arcs, and annotations, binding them
to corresponding IR constructs. The transformation process
preserves structural and behavioral intent of original diagrams
while incorporating formal precision necessary for execution
and analysis.

Following translation, the IR serves as a semantic contract
that can be compiled, simulated, verified, or exported to
external analysis engines. This modularity allows AMIDOL to

V. ANALYTICAL CAPABILITIES AND REWARD
STRUCTURES

To enable formal analysis and inference over domain mod-
els, AMIDOL incorporates comprehensive support for quan-
titative reasoning through reward structures. These reward
models provide mechanisms for tracking system performance,
evaluating policy outcomes, and guiding optimization objec-
tives during execution or simulation. Reward integration with
formal IR semantics creates a powerful foundation for decision
support and performance analysis.

A. Rate and Impulse Reward Formulations

AMIDOL supports two fundamental reward types over
its Intermediate Representation: rate rewards and impulse
rewards, each serving distinct analytical purposes. Rate re-
wards quantify contributions of model configurations across
continuous intervals, making them appropriate for measuring
accumulated costs or benefits accruing over time. Formally, a
rate reward function R, is defined as:

R(s,t) = Zwl - I;(s) (1)
i=1

where s represents current state, w; denotes weight assigned
to sub-state ¢, and I;(s) is an indicator function evaluating to
1 if sub-state ¢ is active in s at time . Rate rewards integrate
over time and commonly serve for calculating metrics like
average utilization, system health, or resource consumption in
continuous processes.

Impulse rewards quantify effects of discrete events when
triggered, capturing instantaneous costs or benefits associated
with specific occurrences. An impulse reward function R is
defined as:

Rs(e,t) =Y w;-Ji(e))
j=1

where e represents triggered event, w; is weight assigned to
sub-event j, and J;(e) is a binary indicator evaluating whether
sub-event j occurred at time ¢t. Impulse rewards prove par-
ticularly valuable for tracking transition costs, event-specific
outcomes, or discrete impacts such as infection counts in
epidemiological models or failure events in reliability analysis.

Value

System—tale
Rate Reward

Time

Fig. 2. Temporal relationships between system states, continuous rate rewards,
and discrete impulse rewards occurring at specific events.

B. Temporal Evaluation Frameworks

AMIDOL enables reward evaluation across three distinct
temporal regimes, each supporting different analytical perspec-
tives on system behavior. Instantaneous evaluation computes
reward values at specific time points ¢, providing performance
snapshots at particular moments. This regime benefits moni-
toring applications and trigger-based responses where timely
reaction to specific conditions is necessary.

Interval-based evaluation aggregates rewards across spec-
ified time intervals [t1,ts], yielding cumulative system per-
formance measures across operational periods. This ap-
proach proves essential for performance assessment, cost-
benefit analysis, and policy evaluation where overall outcomes
across timeframes matter more than instantaneous states. The
interval-based regime supports both definite integrals for con-
tinuous rewards and summation for discrete rewards.

Steady-state evaluation computes long-run average rewards
as t — oo, concentrating on equilibrium behavior under stable
operating conditions. This regime particularly benefits capacity
planning, system design, and strategic decision-making where
transient behaviors are less significant than sustained perfor-
mance. Steady-state analysis requires ergodicity assumptions
but delivers powerful insights into system behavior under
stationary conditions.

These temporal formulations align with typical analytical
requirements in operational research, epidemiology, and sys-
tems engineering, enabling modelers to pose questions like:
“What is the expected number of system failures across a
30-day operational period?” or “What represents the steady-
state infection burden under specific public health policy?” The
combination of reward types and temporal regimes establishes
a comprehensive framework for quantitative system evaluation.

C. Inference and Verification Methodologies

Following model instrumentation with rewards, AMIDOL
enables sophisticated inference workflows leveraging formal
IR semantics. Simulation involves executing the IR under
stochastic or deterministic semantics to generate outcome tra-
jectories, providing empirical evidence about system behavior

across various scenarios. Simulation capabilities support both
transient analysis (examining behavior across finite horizons)
and steady-state analysis (estimating long-run performance).

Model checking enables formal verification of temporal
properties against IR models, utilizing reward-bounded logics
such as CSL (Continuous Stochastic Logic) or LTL (Lin-
ear Temporal Logic). This methodology provides rigorous
guarantees about system behavior, proving specific properties
hold (or delivering counterexamples when violations occur).
Model checking proves particularly valuable for safety-critical
applications where behavioral correctness must be established
with high confidence.

Sensitivity analysis measures how reward outputs vary with
modifications to model parameters or initial conditions, iden-
tifying critical factors influencing system performance. This
technique supports robust decision-making by quantifying im-
pacts of uncertainty and variability in model inputs. Sensitivity
analysis can reveal parameters requiring precise estimation and
those with minimal outcome effects, guiding data collection
efforts and risk assessment.

These inference mechanisms provide model authors with in-
sights regarding both behavioral correctness and performance
characteristics of domain models. The integration of formal
verification with quantitative evaluation creates a powerful
combination for model-based decision support, merging for-
mal method rigor with practical performance metric relevance.

VI. EXPERIMENTAL VALIDATION AND APPLICATIONS

To validate AMIDOL effectiveness and practicality, we
conducted comprehensive evaluations across multiple appli-
cation domains and modeling scenarios. These experiments
assessed framework capabilities in semantic extraction, model
execution, and analytical support, providing evidence of utility
in practical modeling contexts.

A. Evaluation Methodology and Experimental Design

Our evaluation employed a multifaceted methodology de-
signed to assess different AMIDOL performance and capabil-
ity aspects. We selected two representative case studies from
contrasting domains: a classic SIR epidemiological model and
a cybersecurity kill-chain diagram. These examples demon-
strate AMIDOL versatility in capturing domain semantics
across different modeling traditions and application contexts.

For each case study, we created visual diagrams using
appropriate Visual Domain-Specific Ontological Languages
(VDSOLs) tailored to respective domains. The epidemiolog-
ical VDSOL incorporated elements including compartments,
flows, and parameters, while the cybersecurity VDSOL in-
cluded attack stages, vulnerabilities, and countermeasures.
These diagrams underwent parsing through AMIDOL’s seman-
tic layer and transformation into intermediate representations
for subsequent analysis.

We established rigorous evaluation metrics assessing dif-
ferent framework performance dimensions. Semantic fidelity
was evaluated by comparing IR simulation outputs against
manually constructed ground truth models, examining both

structural equivalence (states and transitions) and behavioral
equivalence (reward trajectories and event sequences). Perfor-
mance metrics included translation time from diagram input
to IR construction, plus simulation runtime for fixed time
horizons.

B. Epidemiological Modeling Application

The SIR epidemiological model represents a foundational
approach to modeling infectious disease spread through
populations divided into Susceptible, Infected, and Re-
covered compartments. We implemented this model using
an epidemiology-specific VDSOL containing compartment
nodes, transition arrows, and parameter annotations. The dia-
gram captured essential dynamics of disease transmission and
recovery processes.

AMIDOL successfully translated the SIR diagram into a
formal IR comprising three state variables (S, I, R), two events
(infection, recovery), and associated enabling conditions and
transition logic. The transformation preserved the continuous-
time nature of the original model, with events parameterized
by transmission and recovery rates. We instrumented the model
with rate rewards tracking infected individual counts and
impulse rewards monitoring infection and recovery events.

Comparative analysis demonstrated high semantic fidelity
between AMIDOL-generated IR and manually coded ref-
erence implementation. State trajectories and reward values
showed negligible differences across multiple simulation runs,
confirming translation process accurately captured intended
original diagram semantics. The framework successfully man-
aged non-linear disease transmission dynamics, with infection
rates proportional to susceptible and infected population prod-
ucts.

C. Cybersecurity Analysis Application

The cybersecurity kill-chain model represents a sequential
process describing cyber attack stages from reconnaissance
to objective achievement. We implemented this model using
a security-specific VDSOL containing attack phase nodes,
progression transitions, and defensive countermeasures. The
diagram captured progressive security breach nature and po-
tential intervention points.

AMIDOL translated the kill-chain diagram into a formal IR
comprising seven state variables (representing attack phases),
multiple events (phase transitions), and associated logic. The
transformation preserved the discrete-event nature of the orig-
inal model, with events representing attacker actions and
defensive responses. We instrumented the model with rate
rewards tracking time in compromised states and impulse re-
wards monitoring successful attack progression and defensive
interventions.

Evaluation results confirmed AMIDOL-generated IR accu-
rately captured original kill-chain diagram semantics. Simula-
tion trajectories showed appropriate progression through attack
phases, with defensive events altering probable kill-chain
paths. Reward structures effectively quantified security risks
and defensive effectiveness, providing measurable insights for
security planning and resource allocation decisions.

TABLE II
AMIDOL PERFORMANCE EVALUATION RESULTS

Metric SIR Model Kill-Chain Composite Large-Scale
Diagram Elements 12 18 30 85
State Variables 3 7 10 42
Events 2 9 11 67
Translation (ms) 45 68 98 420
Simulation (s) 0.8 1.2 1.9 15.3
Semantic Fidelity 99.7% 99.2% 98.8% 97.5%
Memory (MB) 12.4 18.7 26.3 145.2

D. Performance and Scalability Assessment

Our evaluation included systematic performance measure-
ments assessing AMIDOL efficiency and scalability. Trans-
lation time from diagram input to IR construction remained
within practical bounds for typical modeling scenarios, with
the SIR model requiring 45ms and more complex kill-chain
model requiring 68ms. These translation times represent neg-
ligible overhead in most modeling workflows, supporting
interactive model development and refinement.

Simulation performance demonstrated similar efficiency,
with both models completing 10,000-sample stochastic sim-
ulations under 1.5 seconds. This performance enables rapid
parameter space and policy alternative exploration, supporting
iterative model refinement and analysis. Computational over-
head introduced by the IR layer proved minimal compared
to directly coded implementations, confirming intermediate
representation efficiency.

Scalability testing involved progressively increasing model
complexity through state space and event count expansion.
Performance degradation remained predictable and manage-
able within typical research and decision-making contexts,
though very large models (exceeding 50 state variables and
200 events) showed more substantial computational demands.
These results indicate AMIDOL suitability for most practical
applications while identifying boundaries where optimization
may be necessary.

E. Comparative Analysis with Existing Approaches

We compared AMIDOL against conventional diagram trans-
formation approaches, including SBML-to-PRISM translation
and UML-to-code generation. AMIDOL demonstrated supe-
rior semantic fidelity by preserving both qualitative diagram
structure and quantitative transition behavior, whereas alter-
native approaches frequently prioritized one aspect at the
other’s expense. The framework’s integrated reward-based
analysis support further distinguished it from tools offering
only structural translation.

The evaluation revealed AMIDOL’s particular strengths in
scenarios requiring interpretability and cross-domain integra-
tion. Traceability preservation between diagram elements and
formal constructs provided valuable transparency, especially
in sensitive applications where understanding analytical result
rationales proves crucial. This capability represents a sig-
nificant advantage over black-box transformation approaches

that obscure relationships between visual designs and formal
semantics.

VII. CONCLUSION AND FUTURE DIRECTIONS

The AMIDOL framework represents a substantial advance-
ment in operationalizing semantics from semi-formal domain
diagrams, bridging the critical gap between intuitive visual
modeling and rigorous formal analysis. Through its modular
architecture, formally grounded intermediate representation,
and integrated reward structures, AMIDOL enables domain
experts to leverage formal method power while utilizing famil-
iar diagrammatic notations. This approach democratizes access
to advanced modeling and analysis capabilities across diverse
application domains.

Our experimental evaluations demonstrate AMIDOL ef-
fectiveness in accurately capturing domain semantics and
supporting sophisticated analytical workflows. The framework
maintains high semantic fidelity across different modeling
paradigms while delivering practical performance for typical
use cases. Reward-based analysis integration enables quanti-
tative system performance and policy effectiveness evaluation,
establishing a foundation for evidence-based decision support
in complex domains.

Several promising future research and development direc-
tions emerge from this work. First, AMIDOL integration
with real-time data ingestion would enable adaptive modeling
pipelines where diagrams evolve alongside observed system
behaviors. This capability would support continuous model
refinement and validation, creating living models remaining
current with evolving system dynamics. Such integration
would particularly benefit applications in rapidly changing
domains like cybersecurity or epidemic response.

Second, developing streaming diagram editors and web-
based collaborative interfaces would significantly improve
AMIDOL accessibility and promote community modeling
practices. Modern web technologies could enable real-time
collaborative diagramming with immediate semantic feedback,
lowering adoption barriers and supporting distributed model-
ing teams. These interfaces could incorporate version control,
commenting systems, and change tracking to manage evolving
diagram collections.

Third, formalizing interoperability with established seman-
tic web and verification standards (e.g., OWL, PRISM, SMT-
LIB) would enable broader integration within research and
industry modeling ecosystems. Standardized export formats
would facilitate tool chain integration and model sharing
across organizational boundaries. Such interoperability would
amplify AMIDOL impact through embedding within larger
analytical workflows and tool environments.

Finally, we envision AMIDOL evolving into a comprehen-
sive modeling ecosystem where interpretable, interoperable,
and executable models are shared, verified, and reused across
disciplines. By grounding visual intuition in mathematical
semantics, AMIDOL establishes foundations for trustworthy,
scalable, and collaborative model development. This vision

aligns with broader movements toward open science, re-
producible research, and transparent decision support across
scientific and engineering domains.

Ongoing AMIDOL development will continue balancing
theoretical rigor with practical usability, ensuring the frame-
work remains accessible to domain experts while providing
formal guarantees required for critical applications. Through
continued refinement and community engagement, AMIDOL
possesses potential to transform how domain experts interact
with formal modeling, making sophisticated analysis tech-
niques available to broader practitioner and decision-maker
communities.

REFERENCES

[1] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice
Hall, 1981.

[2] D. Harel, “Statecharts: A visual formalism for complex systems,’
Science of Computer Programming, vol. 8, no. 3, pp. 231-274, 1987.

[3] T. Miller and H. Giese, “Modeling languages in system design: A survey
and outlook,” IEEE Transactions on Software Engineering, vol. 44, no.
3, pp. 231-247, 2018.

[4] F. Ciocchetta and J. Hillston, “Bio-pepa: A framework for the modelling
and analysis of biological systems,” Theoretical Computer Science, vol.
410, no. 33, pp. 3065-3084, 2009.

[5] S. Uckun and A. Darwiche, “Airm: An agent-based integrated modeling
and reasoning environment for systems biology,” in Proc. Int. Conf. on
Bioinformatics and Biomedicine, 2018.

[6] D. C. Schmidt, “Model-driven engineering,” in [EEE Computer, vol. 39,
no. 2, 2006, pp. 25-31.

[71 N. Noy and D. McGuinness, “Ontology development 101: A guide to
creating your first ontology,” Stanford Knowledge Systems Laboratory,
2001.

[8] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” International Journal of Human-Computer Studies,
vol. 43, no. 5-6, pp. 907-928, 1995.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. CGO, 2004, pp. 75-88.

