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Abstract
How AI communicates with humans is crucial for e�ective human-
AI co-creation. However, many existing co-creative AI tools cannot
communicate e�ectively, limiting their potential as collaborators.
This paper introduces our initial design of a Framework for de-
signing AI Communication (FAICO) for co-creative AI based on a
systematic review of 107 full-length papers. FAICO presents key
aspects of AI communication and their impacts on user experience
to guide designing e�ective AI communication. We then show ac-
tionable ways to translate our framework into two practical tools:
design cards for designers and a con�guration tool for users. The
design cards enable designers to consider AI communication strate-
gies that cater to a diverse range of users in co-creative contexts,
while the con�guration tool empowers users to customize AI com-
munication based on their needs and creative work�ows. This
paper contributes new insights within the literature on Human-
AI Co-Creativity and Human-Computer Interaction, focusing on
designing AI communication to enhance user experience.

CCS Concepts
• Human-centered computing! User centered design.

Keywords
Human-AI Co-Creativity, AI Communication, Framework, Co-Creative
AI, User Experience

ACM Reference Format:
Jeba Rezwana and Corey Ford. 2025. Improving User Experience with FAICO:
Towards a Framework for AI Communication in Human-AI Co-Creativity.
In Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems (CHI EA ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3706599.3719858

1 Introduction
Human-AI co-creativity involves humans and AI collaborating in a
creative process as partners to produce creative artifacts, ideas or
performances [17]. Co-creativity research suggests [54] that when
creativity emerges from human-AI interaction, it can surpass con-
tributors’ original creativity and intentions as novel ideas arise in
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the process. With the emergence of popular Generative AI (GenAI)
systems with co-creative abilities such as ChatGPT [1], DALL-E [2]
and Midjourney [3], human-AI co-creativity is making its way into
mainstream life. We suggest that the next frontier of co-creative AI
needs good collaborative skills in addition to algorithmic compe-
tence. However, designing co-creative AI has many challenges
due to the open-ended nature of the interaction between humans
and AI in creative contexts [18, 46]. For example, co-creative AI
must be able to adapt to spontaneous interaction styles and allow
creative products to develop dynamically across di�erent parts of
the creative process.

An essential component in human-AI co-creativity is commu-
nication for the co-regulation of collaborators [9]. In this paper,
we de�ne AI Communication as where an AI interacts with hu-
mans purposefully and directly to convey information [82]. Our
focus is speci�cally on direct communication, excluding indirect
communication through sensemaking that occurs through creative
contributions. For instance, in a co-creative drawing scenario, AI
might provide feedback on users’ contributions or proactively sug-
gest design improvements, such as saying, “The house you drew
is a little out of proportion. Would you like to �x it, or should I
adjust it for you?” The user can choose to incorporate or disregard
this suggestion, which distinguishes AI communication from AI’s
contribution to the creative process, such as drawing a tree next
to the user’s house. Our de�nition of AI communication also over-
laps with the �eld explainable AI [32, 50], in particular considering
how AI communication can provide additional explanations in co-
creative AI contexts [10]. For example, we consider moments where
an AI might communicate to people at the moment whilst they
interact with the creative product [11].

For e�ective co-creation, Mamykina et al. [64] suggests that co-
creative AI should provide feedback and critique on contributions
similar to how human collaborators do in teamwork. When technol-
ogy e�ectively communicates with people HCI research has shown
that they are perceived as independent social actors [72], improving
user perception of AI [83]. Therefore, AI Communication can be
utilized for co-creative AI to be perceived as an equal partner in
co-creation [67, 81] and to improve user experience [83]. However,
it is challenging to design AI Communication due to the complex
and dynamic nature of the human-AI partnership [46], which re-
quires conveying intricate processes and suggestions across a range
of di�erent types of users [95]. There is a gap in HCI research of
tools, such as design frameworks, for e�ective AI Communication
in human-AI co-creativity. Motivated by this research gap, this
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paper identi�es the aspects of AI communication and how these as-
pects impact user experience through a systematic literature review.
Below are the contributions of this research:

• A Framework for AI Communication (FAICO) as the �rst
step towards designing and interpreting AI Communication
in co-creative contexts based on a systematic literature re-
view. FAICO identi�es key aspects of AI Communication
that should be considered for e�ective co-creation and their
in�uence on user experience.

• Translating FAICO into practical tools such as design cards
for AI practitioners and a con�guration tool for users, thereby
fostering the advancement of human-centered co-creative
AI systems.

The paper is organized as follows. We �rst provide background
on communication in human-AI co-creativity, followed by the
methodology of our literature review. We then introduce FAICO
in section 4 and move to translating FAICO into design cards and
con�guration tools in Section 5. Lastly, we discuss the implications
and future work.

2 Communication in Human-AI Co-Creativity
AI ability alone does not ensure a positive user experience with
the AI [59], especially where interaction is essential between hu-
mans and AI [94]. Co-creative AI systems involve humans and
AI collaborating as partners [17] with creativity emerging that
surpasses either party’s individual creativity [54]. In co-creative
settings, e�ective interaction is crucial [8, 45], e.g. Karimi et al.
found an association between human-AI interaction and creativity
that emerges from the co-creation [47]. However, there is a scarcity
of research focused on the interaction between humans and AI in
the �eld of co-creativity [82]. To address this gap, a few interaction
frameworks have been proposed [33, 45, 81]. Notably, Rezwana and
Maher [82] introduced the COFI framework for designing and eval-
uating interaction design in human-AI co-creativity, highlighting
communication between humans and AI as a key interaction de-
sign component. More recently, the User-Centered Framework for
Human-AI Co-Creativity (UCCC) has been proposed, identifying
key dimensions for modulating control between users and AI [70].
However, none of these frameworks speci�cally explore the dimen-
sions of AI communication and their impact on user experience. In
this paper, we extend the existing frameworks by focusing on the
critical role of AI communication, identifying its key dimensions,
and examining how these dimensions in�uence user experience.

Exploring communication with computer systems has a long
history, dating back to when Alan Turing [28] proposed that a
machine that communicates indistinguishably to humans might
be considered intelligent. For example, a signi�cant challenge in
human-AI collaboration is the development of common ground
for communication between humans and machines [16]. We take
the view that communication is an essential component in human-
AI co-creativity for the co-regulation of the collaborators [9, 53].
In human-AI collaboration, AI Communication helps the AI agent
make decisions in a creative process [9] and supports many aspects
of the user experience [67]. For example, AI Communication in
co-creation can improve user engagement, collaborative experience

and user perception of a co-creative AI [12, 83]. AI Communication
can also improve social presence and interpersonal trust [5].

Designing human-like communication has been described as
an underestimated challenge of machine intelligence [37]. HCI
research shows that how users talk in a human-AI conversation is
similar to human-human conversation [19]. While it is vital to use
human communication and its ideas as a starting point for designing
AI Communication, it should not impose permanent restrictions
on AI Communication [34]. For instance, communication between
artists is often based on intuition and non-verbal interaction [38],
rather than direct explanation-based discussions which are more
traditionally seen in non-creative contexts [10]. Identifying the
appropriate communication for co-creative AI is thus key to its
user experience. For example, elements of communication such
as voice elicit human-like responses toward devices [73], which
may or may not always be appropriate depending on context. In
this paper, we introduce our �rst steps in creating a framework
that could be helpful to guide the design of AI Communication in
co-creation.

3 Framework Development Methodology: A
Systematic Literature Review

In this section, we document the systematic literature review ap-
proach we followed as a methodology to identify the key aspects
of AI Communication and their in�uence on user experience.

To identify essential aspects of AI Communication, we used the
ACM Digital Library to connect to conferences where HCI, AI and
creativity research is typically published and to build on reviews by
others surveying creativity support [29]. We considered documents
published from 1995 until 2024 to consider recent articles. We nar-
rowed our search to full-length papers (e.g. not tutorials or posters)
to ensure we considered high-quality peer-reviewed studies. We
also only considered papers in English that could be understood by
both authors.

We used keywords aligned with our research goal for the frame-
work to search for relevant academic publications. We (the paper
authors) chose these keywords following several weekly discussions
where we re�ected upon our own experiences of AI communica-
tion as co-creative AI researchers. The �rst two keywords related
directly to communication: “Aspects of Communication” (561 re-
sults) and “Factors of Communication” (41 results). The next three
related to interaction and communication between AI and Humans:
“Human-AI Communication” (47 results), “AI Communication” (117
results) and “Human-AI Interaction” (279 results). The �nal four
related to when the AI might communicate with humans: “Proac-
tive Communication” (90 results), “Reactive Communication” (29
results), “Proactive AI” (19 results) and “Reactive AI” (13 results).
From reviewing the abstracts of these papers, we collected 132
papers.

Next, we read the 132 papers, narrowing down the corpus to 107
papers with relevance to AI Communication. We summarized the
discussion on how co-creative AI should communicate information
to users and used a�nity diagramming on these descriptions [36] to
organize the summaries into related groups. Through iterative dis-
cussion, we created the �rst draft of our framework. The framework
described below is primarily based on our literature review while
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Figure 1: The Framework for AI Communication in Co-Creative Contexts

also integrating relevant insights from additional works outside
the scope of the review. The formation and description of FAICO
follow a methodology similar to that used in other interaction and
user-centered frameworks for human-AI co-creation, such as COFI
by Rezwana and Maher [82] and UCCC by Moruzzi and Margarido
[70].

4 Framework For AI Communication (FAICO)
Figure 1 shows the Framework for AI Communication (FAICO) in
the context of human-AI co-creation, introducing critical aspects
to consider for AI communication and their in�uence on the user
experience. The dotted line for user experience (Fig 1) indicates
that it is not directly a part of AI Communication but rather com-
prises aspects in�uenced by it. Below we discuss each aspect of
FAICO and their in�uence and connections to user experience based
on our literature review and related work.

4.1 Modalities
According to FAICO, Modalities refers to distinct channels through
which AI agents communicate with humans, which is supported by
HCI research [48]. Rezwana and Maher outline the classi�cation
of modalities for AI to human communication in human-AI co-
creation, encompassing text, speech, visuals, haptic, and embodied
communication [82]. In our framework, we adopt their classi�cation
of modalities for AI Communication.

4.1.1 Connection to User Experience. The literature demonstrates
that communication modalities in�uence user experience. Text-
based dialogue plays a key role in helping users perceive the AI’s
personality [62] and enhances user satisfaction and enjoyment
[75]. Speech-based communication has been shown to improve per-
ceived communication quality and trust, often performing better
than visual cues in enhancing user experience [102]. Verbal and
non-verbal cues allow AI agents to convey their states e�ectively,
which contributes to improved feelings of collaboration and fosters
e�ective human-AI partnerships [4, 12, 87]. Haptics and visual cues

also play an important role, enhancing users’ understanding of emo-
tional qualities and fostering a sense of connection [44, 79, 84, 93].
Embodied communication improves the feelings of collaboration
with perceived presence compared to text-based communication
[56]. Furthermore, multimodal communication, such as combin-
ing visuals with verbal interactions, has been found to improve
user experience [85]. For instance, the integration of voice, em-
bodied communication, dialogue, and facial expressions provides
users with a more accurate perception of AI, improving feelings of
collaboration and social presence [71, 87].

The in�uence of modalities in AI Communication varies be-
tween user demographics such as gender [40], age [80], neuro-
diversity [85], as well as the context in which multimodality is
introduced [24]. For example, Vossen et al. [91] found a gender-
speci�c response to embodied communication. To improve the user
experience for a diverse population, multimodal interactions
signi�cantly enhance the performance of AI compared to unimodal
interactions [77, 85].

4.2 Response Mode
Response Mode refers to the approach used by an AI agent to initiate
or respond to communication during a co-creation. AI can be either
proactive or reactive in terms of how it responds. Proactive AI
systems “do not wait for user input but instead actively initiate
communication” [89]. On the other hand, when an AI is reactive,
it communicates with users when prompted, for example, when
clicking a button [69].

4.2.1 Connection to User Experience. Response mode in�uences
user experience in di�erent ways. Proactive AI, while generally fa-
vored in social interactions over reactive AI [69], has been perceived
as annoying in several studies [89], particularly in contexts where it
interrupts users’ immersion in creative activities [15]where reactive
AI might be preferable. Reactive AI can improve task performance
over time and improve perceived usefulness [6, 49]. However, proac-
tive AI can improve perceived trust [43, 51, 101] and encourage
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users to be more critical of AI output, which we found connected
with human-centered AI guidelines on responsible design [30].

The demographics of users and contexts also a�ected the dif-
ferent types of timing participants wanted. Pang et al. [76] found
that while most mental health app users preferred reactive AI, re-
searchers like doctoral students were more open to proactive AI.
Similarly, Meurisch et al. [69] demonstrated that factors such as age,
country, gender, and personality traits impact user preferences, with
individuals with higher openness favoring proactive AI, while those
lower in extraversion preferred reactive communication. Luria and
Candy [61] further showed that parents’ desired level of AI proactiv-
ity varied depending on the situation, emphasizing the importance
of context.

4.3 Timing
Timing refers towhen an AI system communicates with the user, de-
scribing whether interactions occur simultaneously or at di�erent
times. Timing has been indicated as a crucial aspect of communica-
tion in human-AI collaboration [25, 106]. AI Communication can
happen either in a synchronous (whilst co-creating) or asynchronous
(outside of working times such as noti�cations) manner [25].

4.3.1 Connection to User Experience. Timing a�ects the user ex-
perience in many di�erent ways. Synchronous communication is
bene�cial when immediate feedback and real-time collaboration
are necessary [55]. It’s particularly useful in improvisational co-
creation, such as the studio stage of choreography creation, where
AI can engage with users in real-time [58]. Situations requiring a
spontaneous and immediate exchange of ideas and feedback from
AI can enhance the co-creation process and successful task com-
pletion [22]. Asynchronous communication can be useful when
users need time for re�ection and deeper consideration of AI sug-
gestions [7, 88]. Creative activities that bene�t from thoughtful
consideration, such as reviewing creative writing or art and pro-
ducing re�ection, asynchronous communication from the AI, could
be useful there [58, 98].

Timing in�uences di�erent user demographics and creative stages
di�erently. Experienced users often prefer asynchronous commu-
nication from AI [97], likely because it allows them to maintain
an uninterrupted creative �ow. Di�erent stages of the creative pro-
cess may require di�erent timing of AI communication [97]. For
example, the ideation stage can bene�t from synchronous communi-
cation, but the execution stage, where AI works on time-consuming
tasks, can use asynchronous communication [42, 57].

4.4 Communication Type
Communication type refers to the type of AI Communication with
which AI systems convey information to users based on distinct pur-
poses. The type of communication as one of the major dimensions
in AI-mediated communication [34, 35]. According to FAC, types of
AI Communication include: explanation, suggestion, and feedback.
Explanation can be de�ned as representations of underlying causes
that led to a system’s output and which re�ect decision-making
processes. Feedback refers to communication in the form of critique,
analysis, or assessment of a particular contribution, idea, or artifact.
Suggestion refers to recommendations or alternatives to the user

contributions during collaborative processes that align with the
user’s creative objectives.

4.4.1 Connection to User Experience. Research shows that commu-
nication type in�uences various phases of co-creation. Example-
based suggestions are e�ective in the early stages, fostering ideation,
while rule-based suggestions are better suited for promoting user
understanding [100]. Divergent suggestions are particularly useful
during the initial phases to encourage creativity, whereas conver-
gent suggestions are more e�ective later, helping to re�ne the
co-created product [47]. AI explanations also play a crucial role in
shaping user trust. Clear reasoning enhances trustworthiness [68],
and social transparency, such as making social contexts visible, im-
proves both trust and decision-making [21]. However, while provid-
ing reasoning increases trust, disclosing uncertainty can diminish
it [92]. Excessive trust may lead to overreliance on AI, reducing
human accuracy [74], a problem further ampli�ed by human-like
behaviors, such as hesitations in chatbot responses [105]. More-
over, users tend to value explanations of overall decision-making
more than detailed explanations of individual actions, particularly
in team settings [103].

Users’ responses to AI suggestions are shaped by demographics
and task-related factors, including self-con�dence, con�dence and
alignment with the suggestion, and pre-existing beliefs about hu-
man versus AI performance [90]. Tailoring AI communication to
align with users’ cultural backgrounds further enhances interaction
e�ectiveness [104].

4.5 Explanation Details
Explanation details refers to the level of detail that users are given by
an AI in co-creation. AI Communication can range from giving full,
to moderate, to the least amount of details supported by Moruzzi
and Margarido [70].

4.5.1 Connection to User Experience. Howmuch explanation detail
is useful seems to vary depending on the co-creative context. There
is a balance to be struck between detailed explanations and more
ambiguous explanations that o�er amoderate understanding of how
an AI works whilst still providing an opportunity for serendipity or
surprise [10]. For example, in AI music making, whilst AI ambiguity
can lead to moments of frustration, it can also be appropriated by
musicians [13]. With an AI for co-creative drawing, Oh et al. [75]
found that whilst users were more content with drawings based on
detailed instructions from a co-creative AI, they also enjoyed its
unpredictable nature. Full explanations are often bene�cial during
ideation stages, helping users understand the AI’s intentions [10,
13, 66], whereas less detailed explanations are preferable for in-the-
moment interactions, such as re�ecting on the AI’s output, where
additional context may not be necessary [26].

The appropriate level of explanation also depends on user de-
mographics and the stage of the creative process. Explanations
should be tailored to the user’s AI literacy and expertise [11, 70].
For instance, experienced users may prefer full explanations to
access the detailed sequence of actions performed by the AI [107],
while non-experts may bene�t more from moderate or minimal
explanations to avoid overwhelming complexity [70].
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Figure 2: Design Cards

Modalities

Haptic

Speech

Visual

Embodied

Text

Response Mode

Reactive

Proactive

Types

Explanation

Suggestion

Feedback

Timing

Asynchronous

Synchronous

Tone

Warmth             

Friendliness

Cultural Alignment

Politeness

Explanation 
Details

Moderate

Latest

Full

Configure AI Communication

Figure 3: Con�guration Tool for Users

4.6 Tone
Tone refers to qualities of AI Communication that determinewhether
the expression of the communication conveys a positive emotional
intent or not. Tone has been suggested as an aspect that can a�ect
human-AI team performance [52, 63]. In our literature search, we
found four in�uences on the perceived tone of AI Communication
- politeness (use of considerate, respectful language and behavior
following social norms), warmth (being approachable and a�able in
interactions), friendliness (ability to foster congenial relationships)
and cultural alignment (following practices and norms matching
the expectations of those involved).
4.6.1 Connection to User Experience. The tone of AI communica-
tion signi�cantly impacts user experience. Colley et al. [14] found
that when virtual AI avatars in an autonomous vehicle simulation
communicated acknowledgment of a user’s polite gestures (e.g.,
waving thank you), the positive perception of the AI increased,
demonstrating how respectful behaviors and adherence to cultural
norms enhance user experience. Warmth and friendliness also im-
prove user satisfaction and perceptions of AI capability. For instance,
Gilad et al. [31] showed that increasing an AI’s warmth positively
in�uenced user satisfaction, whereas Poeller et al. [78] found that
overly positive messages were sometimes met with skepticism in
video game contexts, emphasizing the importance of context in de-
termining the appropriateness of tone. Similarly, AI that responds in
a human-like manner with supportive and friendly communication
fosters a more engaging and satisfying user experience compared
to interactions that lack these qualities [20].

Mascarenhas et al. [65] demonstrated that variations in AI agents’
rituals based on cultural behaviors had noticeable e�ects on users.
Likewise, users preferred conversational AI aligned with their cul-
tural norms and were adept at identifying cultural di�erences in
dialogue [23]. Aligning the tone of AI communication with demo-
graphic factors such as age, gender, and cultural background can
lead to more e�ective and satisfying interactions [86].

5 Framework Applications
This section presents two practical applications of FAICO: Design
cards for designers and con�guration tools for users.

5.1 Design Cards
We demonstrate an actionable approach to using FAICO for design-
ers by translating it into design cards (Figure 2). Frameworks can
be used to guide the design and sca�old of design cards; we o�er the
example for FAICO here to directly showcase this potential use case.
These design cards could be used by AI practitioners to consider
how to include e�ective AI communication in their co-creative AI to
improve user experience. Design cards have long been recognized
as valuable tools in HCI and design work, appreciated for being
“simple, tangible, and easy tomanipulate” [60] and an “approachable
way to introduce information and sources of inspiration as part
of the design process” [96]. Design cards can support designers
across various stages of design, including ideation, prototyping,
and implementation [39].

We suggest that each design card highlights a speci�c key com-
ponent of AI communication from FAICO, explains the aspect, why
it is critical to consider in designing AI communication, and how it
could in�uence the user experience. Figure 2 presents a prototypical
design card as a proof of concept for developing design cards from
FAICO, illustrating how the cards could appear digitally. The card
features two tabs: a Concept tab describing the corresponding com-
ponent of the AI Communication framework and a User Experience
tab detailing how that component impacts di�erent aspects of user
experience. In a physical format, the front of each card will include
the Concept tab, while the back will feature the User Experience tab.

Designers can use the design cards for direction and inspiration,
helping them enhance user experience through AI communication
within their own projects. These cards support designers in explor-
ing the design space of AI communication in co-creation contexts.
Additionally, they provide insights into how each component of AI
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communication impacts di�erent aspects of user experience, o�er-
ing actionable suggestions for directly improving user experience
outcomes.

5.2 Con�guration Tool
This section presents an approach to transforming FAICO into a
con�guration tool (Figure 3) for end-users. With the con�gura-
tion tool, users can customize and personalize AI communication
in their own human-AI collaboration context. The tool can be ap-
plied to various co-creative systems, such as design, writing, music
composition, or art generation, enabling users to tailor AI commu-
nication to their speci�c needs and preferences. As highlighted in
the framework section (section 4), user demographics signi�cantly
in�uence preferences for di�erent aspects of AI communication.
Research suggests that users who design their own products using
customization toolkits perceived higher value in their creations
compared to standard o�erings [27]. Allowing users to experience
di�erent interface con�gurations results in interfaces that enhance
user engagement and satisfaction [41].

The con�guration tool enables users to adjust key communica-
tion parameters from FAICO, including modalities, timing, tone,
response modes, and communication types, based on their unique
requirements and creative objectives. For example, in a co-creative
design tool, users could con�gure the AI to provide synchronous
verbal suggestions during brainstorming sessions while opting for
asynchronous text-based feedback for re�ning ideas at a later stage.
This �exibility ensures that the AI’s communication aligns with the
user’s work�ows and supports their engagement.

6 Discussion and Conclusions
Despite the rapid advancement of generative AI in creative domains,
many co-creative AI systems lack e�ective AI communication
[82], which limits the user experience [12, 83]. Designing e�ec-
tive human-AI interactions requires identifying key challenges,
understanding the unique complexities of AI design, and gener-
ating insights to guide future research [99]. This paper presents
a novel design framework for designing e�ective AI Communica-
tion (FAICO) to improve user experience in human-AI co-creation.
Through a systematic literature review, we designed FAICO to
support people in designing and con�guring human-centered AI
Communication by considering di�erent aspects of AI Communica-
tion and their in�uence on user experience. We then illustrate how
FAICO can be practically used through the creation of design cards
to help designers consider AI communication in their AI systems.
Additionally, we show how FAICO could be utilized as a con�g-
uration tool for co-creative AI systems, which users could use to
customize and adjust AI communication preferences to align with
their own goals.

FAICO can also be used as an evaluation tool to systematically
interpret and assess the design of AI communication in existing
co-creative AI systems. Using FAICO, researchers and practitioners
could identify trends, strengths, and gaps in communication design,
providing valuable insights into how systems approach commu-
nication and highlighting areas for improvement to enhance user
experience and future research directions. For instance, FAICO can

reveal whether a system lacks proactive communication capabili-
ties or uses only limited tone and timing preferences. Additionally,
FAICO can serve as a benchmarking tool, allowing comparisons
between co-creative AI systems’ AI communication.

6.1 Limitations & Future Work
FAICO is clearly in the preliminary stage and has room for re�ne-
ment or extension. Additional aspects of AI communication could
be incorporated to address more nuanced design requirements or
to cater to emerging, niche co-creative AI domains. FAICO is also
based on a systematic literature review, limited to papers from the
ACM Digital library, and currently lacks empirical validation; we
plan to conduct user studies with designers and users of co-creative
AI to evaluate FAICO’s e�ectiveness across diverse co-creative
domains. These studies will also explore how AI communication
should adapt to various co-creative contexts. Insights from the lit-
erature review suggest factors, such as the creative phase, user
expertise, and domain-speci�c practices, in�uence the optimal de-
sign strategies for AI communication. Empirical studies will help
better understand the in�uence of these factors and re�ne FAICO
accordingly.

In addition to validating the framework itself, we plan to evaluate
the utility of the design cards presented. By conducting user studies
with designers using these cards to develop AI communication, we
can assess their e�ectiveness as a guiding tool for designing human-
centered co-creative AI communication and identify opportunities
for improvement. Future research can also explore how individual
preferences through the con�guration tool might in�uence the
user experience to identify more nuanced human-centered design
implications.

There is also an opportunity for FAICO to connect more explic-
itly with the unique challenges of co-creative processes, such as
whether di�erent types of communication can spark opportunities
for re�ection [26] or moments of surprise [10]. In particular, there
is a need to explore the trade-o�s in AI communication design
identi�ed in FAICO and related work — such as how to balance
additional multimodal communication elements alongside the risk
of overwhelming users and breaking their creative �ow [15].

Additionally, we want to identify trends and gaps in the AI
communication landscape by analyzing a large corpus of existing
co-creative AI systems across various domains. This analysis will
provide valuable insights into current practices, highlight best ap-
proaches, and uncover gaps in the design of AI communication.
The results will guide future research directions and help establish
a roadmap for advancing the �eld of human-AI co-creativity. Over-
all, this paper lays preliminary groundwork to guide the design
of AI communication and to help improving future co-creative AI
systems.
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