
Developing Collaborative XML

Editing Systems

Ansgar Robert Sandy Gerlicher

A thesis submitted in fulfilment of the requirements of the

University of the Arts London for the degree of

Doctor of Philosophy

October 2007

London College of Communication

University of the Arts London

Copyright © 2007 Ansgar Gerlicher

Abstract

In many areas the eXtensible Mark-up Language (XML) is becoming the standard

exchange and data format. More and more applications not only support XML as an

exchange format but also use it as their data model or default file format for graphic,

text and database (such as spreadsheet) applications.

Computer Supported Cooperative Work is an interdisciplinary field of research deal-

ing with group work, cooperation and their supporting information and

communication technologies. One part of it is Real-Time Collaborative Editing,

which investigates the design of systems which allow several persons to work simul-

taneously in real-time on the same document, without the risk of inconsistencies.

Existing collaborative editing research applications specialize in one or at best, only

a small number of document types; for example graphic, text or spreadsheet docu-

ments. This research investigates the development of a software framework which

allows collaborative editing of any XML document type in real-time. This presents a

more versatile solution to the problems of real-time collaborative editing.

This research contributes a new software framework model which will assist soft-

ware engineers in the development of new collaborative XML editing applications.
The devised framework is flexible in the sense that it is easily adaptable to different

workflow requirements covering concurrency control, awareness mechanisms and

optional locking of document parts. Additionally this thesis contributes a new frame-

work integration strategy that enables enhancements of existing single-user editing

applications with real-time collaborative editing features without changing their

source code.

I

Publications and presentations based on this research thesis

Publications

" Compendium of Computer Science in Media (Kompendium der Medienin-

formatik - Medienpraxis). Authored chapter on Computer Supported

Cooperative Work (CSCW). Springer Verlag. July 2007,315 pages. ISBN

978-3-540-36629-4

" Transparent Extension of Single-User Applications to Multi-User Real-Time

Collaborative Systems - An Aspect Oriented Approach to Framework Integ-

ration. Proceedings of the 9' International Conference on Enterprise

Information Systems - ICEIS 2007. Funchal, Portugal 2007, pp. 327-334.

ISBN 978-972-8865-91-7

"A Framework for Real-Time Collaborative Engineering in the Automotive In-

dustries. Lecture Notes in Computer Science (LNCS 4101). Proceedings of

the 3. International Conference on Collaborative Design, Visualization and
Engineering. Mallorca, Spain. Springer Verlag 2006, pp. 164-173, ISBN 3-

540-44494-7

" Extending existing single-user applications with collaborative functionality

using the Collaborative Editing Framework for XML (CEFX). (Erweiterung

bestehender Anwendungen um kollaborative Funktionen mit Hilfe des Col-

laborative Editing Framework for XML (CEFX)). In Proceedings of the dolT

Software-Research-Day (Software-Forschungstag). Stuttgart. Oktober 2004.

Fraunhofer IRB Verlag 2005, pp. 150-165, ISBN 3-8167-6715-X

Presentations

" 9th International Conference on Enterprise Information Systems, Funchal,

Madeira, Portugal (ICEIS 2007,06/2007)

Title of the talk: Transparent Extension of Single-User Applications to Multi-

User Real-Time Collaborative Systems - An Aspect Oriented Approach to

Framework Integration

" 3. Automotive Harness Forum, Munich, Germany (10/2006)

Title of the talk: Collaborative Engineering - Die Bordnetzenwicklung der

Zukunft (the future of vehicle electrical engineering)

0 Third International Conference on Cooperative Design, Visualization and En-

gineering, Mallorca, Spain (CDVE2006,09/2006)

Title of the talk: A Framework for Real-Time Collaborative Engineering in

the Automotive Industries

" Spring Research Symposium, RNUAL, London, UK (02/2005)

Title of the talk: Developing a method for web-based collaborative editing of
XML documents which will improve collaborative editing procedures

Do IT Software-Research-Day, Stuttgart, Germany (10/2004)

Title of the talk: Collaborative Editing Framework for XML

Erweiterung bestehender Anwendungen um kollaborative Funktionen (ex-

tending existing single-user applications with collaborative functionality

using)

" European Computer-Supported Cooperative Work Conference 2003, Doctor-

al Colloquium, Helsinki, Finland (ECSCW03,09/2003)

Title of the talk: Real-time web-based collaborative editing ofXML docu-

ments - editing structured documents

III

Acknowledgements

I wish to express my most sincere gratitude to my director of studies Dr Jack Tchan

and my supervisors Professor Robert Thompson and Professor Martin Goik for their

great supervision and guidance during this study. I also would like to sincerely thank

Dr. Andrew Manning as part of the "London team" for his support as a substitute su-

pervisor. I was always cordially received in London and it has been a great pleasure

working with them. I would also like to express my gratitude to all members of staff

at the LCC that I made contact with. Thanks also goes to Professor Wolfgang Faigle.

Without his support this would not have been possible. Not to forget my colleagues

and Professors at the HdM Stuttgart, where I spent three great years of my work life.

They gave me all the freedom and support I needed in order to get this research star-

ted. I also would like to thank Dr. Claudia Ignat and Professor Hala Skaf-Molli for

their support and for providing me with valuable information, at the very beginning

of my studies, which helped me to orientate and better understand the research field

of real-time collaborative editing. Special thanks goes to my lovely grandaunt Vera

who always gave me a home during my visits in London. The same applies to my

grandmother Jean and the rest of the British family. Thanks also goes to my parents
for their support and for believing in me. Last but not least, I would like to thank

Kathrin for her patience, comprehension and emotional support especially at those

many weekends I had to work on the thesis.

IV

Table of Contents

Chapter 1. Introduction ..
1

1.1. Emergence of XML .. .2
1.2. Meta-syntax for the specification of programming languages3

1.2.1. Parsing of programs3
1.2.2. Semantic correctness ..

4

1.3. XML for the specification of XML languages6
1.3.1. Syntax rules ..

6

1.3.2. Grammatical rules ..
7

1.3.2.1. DTD
7

1.3.2.2. XML Schema
9

1.3.3. Parsing of XML ..
10

1.4. Structure of XML documents ..
11

1.4.1. Editing trees ...
12

1.5. Concurrent editing ...
15

1.5.1. Concurrency problems in database systems ... 15

1.5.1.1. Lost update ...
15

1.5.1.2. Uncommitted dependency .. 16

1.5.1.3. Inconsistent retrieval ..
17

1.5.2. Concurrency problems in collaborative editing systems 18

1.5.2.1. Divergence ..
20

1.5.2.2. Causality violation ..
21

1.5.2.3. Intention violation ..
22

1.5.2.4. Semantic inconsistency ..
23

1.5.3. Concurrency control techniques ... 24

1.5.3.1. Locking ...
25

Pessimistic locking ...
25

Optimistic locking ..
27

Locking granularity ..
29

1.5.3.2. Turn-taking ... 30

1.5.3.3. Timestamp ordering 31

1.5.3.4. Causal ordering .. . 32

1.5.3.5. Operational Transformation ... 33

V

1.5.4. Workspace awareness ..
35

1.6. System architectures ..
37

1.6.1. Centralised architecture ..
37

1.6.2. Replicated architecture ...
38

1.6.3. Hybrid architecture ...
39

1.7. Web-based editing ...
41

1.7.1. HTTP ..
41

1.8. Summary of contributions and thesis outline ... 43

Chapter 2. Structure and conflict probability of XML documents
..................................

45

2.1. Analysis of XML documents ...
45

2.2. Distribution of elements within an XML document .. 48

2.3. Analysis of conflict probability ... 53

2.3.1. Theoretical model for the probability of conflicts 53

2.3.1.1. Linear data structure ... 54

2.3.1.2. Hierarchical data structure .. 55

2.3.1.3. Binary tree data structure .. 56

XML data structures in general ..
59

The scenario ..
60

The model ...
61

Enhanced model ..
63

2.3.2. Simulation of conflicts ...
66

2.3.2.1. Monte Carlo simulation method ... 66

2.3.2.2. Static simulation of conflicts .. 67

Editing general XML documents .. 67

Editing binary trees ... 71

2.4. Dynamic simulation of conflicts .. 73

2.5. Conclusions ..
76

Chapter 3. Consistency maintenance in hierarchically structured documents
78

3.1. Contemporary work ...
78

3.2. A new algorithm for synchronisation of XML documents
82

3.2.1. Intention preservation by operational transformation
85

... 3 2 2 Definition and execution context 89
.................... . . .

: 2 3 3 i i i 90 ons without OT Preserv ng ntent
3.2.4. Conflicting structural operations ..

92

VI

3.2.4.1. Conflicting insert operations .. 93

3.2.4.2. Conflicting insert and delete operations ... 93

3.2.4.3. Conflicting delete operations .. 95

3.2.5. Conflicting mutational operations .. 96

3.2.6. Locking of nodes for conflict prevention ... 98

3.2.7. Informal specification of the CMAX algorithm ... 98

3.2.8. Conclusions .. 102

Chapter 4. Implementation of the algorithm in software ... 103

4.1. Software components ...
103

4.1.1. Concurrency Controller ..
103

4.1.1.1. ConcurrencyController interface methods ... 105

4.1.1.2. ExecutionContext interface methods .. 106

4.1.1.3. The AbstractConcurrencyControllerImpl class 107

Executing a local operation ... 110

Executing a remote operation ... 111

4.1.1.4. The OrderingConcurrencyControllerImpl class 113

4.1.1.5. Preparing the execution of an operation ... 114

Finding and classifying conflicts .. 115

Resolving conflicts ... 116

Identify operations with automatically resolved conflicts 120

Process remaining operations ... 120

Swapping state vectors of operations .. 120

4.1.2. Conflict Resolution Provider .. 121

4.1.3. Operations .. 126

4.1.3.1. Insert ... 129

Node .. 129

NodePosition ... 130

Executing an insert operation ... 130

Undoing an insert operation .. 131

4.1.3.2. Delete .. 131

Executing a delete operation ... 132

Undoing a delete operation ... 132

4.1.3.3. Update ... 133

NodeModification ... 133

VII

Executing an update operation ..
134

Undoing an update operation ..
135

4.2. Testing CMAX ...
135

4.2.1. Simulation software implementation ...
136

4.3. Integration of CMAX in CEFX ...
142

4.4. Conclusions ..
145

Chapter 5. The Collaborative Editing Framework for XML ... 146

5.1. Motivation ..
146

5.2. Contemporary Collaborative Systems ... 147

5.3. CEFX Software Architecture ... 152

5.3.1. CEFX components ... 154

5.3.1.1. The Plug-in Mechanism ... 156

ConcurrencyController extension ... 158

ConflictResolutionModule extension ... 158

NetworkController extension .. 158

Awareness extension .. 158

5.3.1.2. The DOM Adapter ..
159

A shared data model ...
160

DOM/DOM translation ..
160

DOM/API translation ..
161

5.3.1.3. The CEFX Controller ...
161

5.3.1.4. The Network Controller ... 162

5.3.1.5. The Awareness Controller .. 162

5.4. Conclusions ..
163

Chapter 6. Implementation of the CEFX system ... 164

6.1. CEFX Client ...
165

6.1.1. The CEFX client base package ..
166

6.1.1.1. Loading a document and initialising an editing session
168

6.1.1.2. Initialisation of the CEFXController ..
171

6.1.2. The dom. adapter package ...
172

6.1.2.1. Locking of nodes ..
174

6.1.3. The client package ..
175

6.1.4. The client. net package ..
177

6.1.4.1. The NetworkController interface ...
178

VIII

6.1.4.2. The CEFXSession interface
... 180

6.1.5. The registry and extension packages .. 181

6.1.6. The util package ... 183

6.1.7. The awareness package .. 186

6.1.7.1. The AwarenessController interface
.. 187

6.1.7.2. The AwarenessWidget interface
...

188

6.1.7.3. Propagating events .. 189

6.2. CEFX Server ... 192

6.2.1. The CEFX server base package ... 193

6.2.1.1. CEFXServer interface
.. 194

6.2.2. The net package .. 197

6.2.3. The util package ... 198

6.3. Computer Networking issues
... 198

6.3.1. Network bandwidth and delay ... 198

6.3.2. Networking software issues ... 200

6.3.2.1. Remote Method Invocation .. 200

6.3.2.2. Virtual Private Networks .. 201

6.3.2.3. JXTA .. 201

6.4. Supporting awareness mechanisms .. 201

6.5. Conclusions .. 203

Chapter 7. Integration of CEFX into an existing single-user application 204

7.1. Extending GLIPS ... 205

7.1.1. Aspect Oriented Programming ... 205

7.1.2. AOP integration of CEFX .. 205

7.1.3. Integrating awareness support .. 211

7.2. Integration Summary ... 212

7.3. Installation and set-up of the CEFX proof of concept prototype software........ 213

7.3.1. Setting up the CEFX demonstration .. 214

7.3.2. The document repositories ... 216

7.3.3. Starting an editing session .. 217

7.4. Conclusions .. 219

Chapter 8. Final discussion .. 220

8.1. Summary .. 220

8.2. Conclusions .. 221

IX

8.2.1. Summary of achievements. ...
224

8.3. Future work ..
225

X

List of Figures

Figure 1.1: Parsing of a computer program ... 4

Figure 1.2: Compiler tasks and structure ... 5

Figure 1.3: Process of XML parsing ... 11

Figure 1.4: Tree representation of a simple XHTML Document 12

Figure 1.5: Example of an insert operation ...
13

Figure 1.6: Example of a delete operation ... 13

Figure 1.7: Example of a move operation ... 14

Figure 1.8: Lost update .. 16

Figure 1.9: Uncommited dependency .. 17

Figure 1.10: Inconsistent retrieval ... 18

Figure 1.11: Scenario of a real-time group editing session ... 19

Figure 1.12: Divergence example: identical sites .. 20

Figure 1.13: Divergence example: divergent sites .. 20

Figure 1.14: Causality violation .. 22

Figure 1.15: Compatibility matrix of SX-locking mechanism .. 25

Figure 1.16: Two phase locking .. 26

Figure 1.17: Strict two phase locking .. 27

Figure 1.18: The three phases of a transaction .. 28

Figure 1.19: Timestamp ordering scenario .. 32

Figure 1.20: Incorrect integration of operations .. 34

Figure 1.21: Centralised architecture with single server process 38

Figure 1.22: Replicated architecture .. 39

Figure 1.23: Hybrid architecture ... 40

Figure 2.1: Example SVG graphic, XML document structure and source code 47

Figure 2.2: Frequency of documents within a certain range of number of elements...... 50

Figure 2.3: Example for analysed properties ... 51

Figure 2.4: Average distribution of element on hierarchy levels 52

Figure 2.5: Median distribution of elements on hierarchy levels 53

Figure 2.6: Structure of a linear document .. 54

Figure 2.7: Hierarchical document with one hierarchy level .. 55

Figure 2.8: Binary tree structures with hierarchy levels 1 to 3 .. 57

XI

Figure 2.9: Binary tree with three hierarchy levels ... 58

Figure 2.10: Example probability distributions (normal and discreet) for the selection of

nodes .. 60

Figure 2.11: Example document tree 64

Figure 2.12: Simulation results of the static simulation with number of conflicts per
document of a certain size for a certain number of concurrent users 70
Figure 2.13: Conflict probability for XML documents with a binary tree structure and

two users working concurrently 72

Figure 2.14: Simulation of multiple users working on an XML document concurrently

.. . 74

Figure 2.15: UML Diagram on dynamic simulation software classes 76

Figure 3.1: An example concurrent editing scenario 86

Figure 3.2: Convergent documents with lost intentions
.. 88

Figure 3.3: Satisfying the intention preservation property by operational transformation

.. . 89

Figure 3.4: Preserving intentions without operational transformation 92

Figure 4.1: Concurrency Controller class diagram .. 104

Figure 4.2: ConcurrencyController thread activities ... 109

Figure 4.3: Execution of a local operation scenario .. 110

Figure 4.4: Scenario of executing a remote operation ... 112

Figure 4.5: Executing a remote operation activity diagram .. 113

Figure 4.6: Prepare execution activity diagram
... 115

Figure 4.7: Check conflict sequence diagram ... 116

Figure 4.8: Process real conflicts activity diagram .. 117

Figure 4.9: Processing resolvable conflicts activity diagram .. 119

Figure 4.10: ConflictResolutionProvider class diagram ... 121

Figure 4.11: Operation interfaces and classes ... 127

Figure 4.12: 1nsertOperationlmpl class ... 129

Figure 4.13: Class NodePosition ... 130

Figure 4.14: DeleteOperationImpl class .. 131

Figure 4.15: UpdateOperationlmpl class ... 133

Figure 4.16: NodeModification class .. 134

Figure 4.17: Simulation software server and client components 137

Figure 4.18: Simulation sequence diagram ... 140

XII

Figure 4.19: CEFX package structure ... 142

Figure 4.20: Overview of the CMAX classes and packages ... 144

Figure 5.1: Hybrid architecture with server and clients .. 153

Figure 5.2: Main CEFX components ... 155

Figure 5.3: CEFX extensions XML Schema ... 157

Figure 6.1: Classes in Java package de. hdm. cefx .. 166

Figure 6.2: Execution step of the loadDocument(...) method .. 168

Figure 6.3: Sequence of calls when successfully initialising a editing session 170

Figure 6.4: Package dom. adapter classes .. 172

Figure 6.5: Client package classes ... 175

Figure 6.6: Classes of the client. net package ... 177

Figure 6.7: Classes in the registry and extension packages ... 182

Figure 6.8: Classes in the util package .. 183

Figure 6.9: Classes in the awareness and awareness. event package 186

Figure 6.10: The DefaultWidget visualises the awareness events as text messages..... 189

Figure 6.11: Propagation of an awareness event with external scope 190

Figure 6.12: Scenario of an incoming remote awareness event 191

Figure 6.13: Scenario of internal awareness event propagation 192

Figure 6.14: CEFX server classes in package de. hdm. cefx. server 193

Figure 6.15: Connect client to server activity diagram ... 195

Figure 6.16: Uploading a document activity diagram ... 196

Figure 6.17: CEFX server classes .. 197

Figure 7.1: Scenario of code interception .. 207

Figure 7.2: The GLIPS Graffiti editor user interface .. 217

Figure 7.3: A collaborative editing session with GLIPS and CEFX 218

XIII

Chapter 1. Introduction

With the advent and popular use of computer network systems has arisen the concept

of collaborative editing of computer files. These computer files can contain either

image data used in arts and multimedia applications or text data used in publishing,

as well as data from many other domains. Contemporary real-time collaborative edit-
ing systems can be used for one type of data, either image or text only; for example

GRACE (Sun and Chen 2002), REDUCE (Chen 2001). Editing of image data and

text data in one system is not possible.

The Extensible Mark-up Language (XML) is a de facto standard today. Because of

its wide spread use as a storage format for image data as well as for text data it is

very important for publishing, data exchange, graphics and many other application

areas. It can be regarded as a unified representation of many of the computer file rep-

resentations. In this thesis a system for collaborative editing of XML files is devised

which unifies different collaborative editing solutions for different application types.

This is achieved by the development of a framework for concurrent editing of XML

documents. The framework provides a programmers interface for developing new

real-time collaborative editing applications or augmenting existing single-user XML

editing applications with collaborative editing features.

"Synchronous collaborative editing systems need concurrency control

schemes to resolve inconsistency problems caused by participants' simul-

taneous operations. " (Chen 2001).

This thesis introduces a concurrency control scheme for synchronous collaborative

editing of XML documents. It examines to what extent the characteristics of XML

can support synchronous collaborative editing. A collaborative editing system is used

by team members who work together to achieve a common goal. Teams sometimes

consist of globally distributed members. Therefore a model for a distributed collabor-

ative editing system for XML documents is introduced herewith. To understand how

a collaborative editing system for XML documents differs from other collaborative

editing systems it is important to know the properties of XML and what makes XML

different to other computer file formats. The following sections 1.1 to 1.4 give a

short introduction to the emergence of XML, the difference between programming

1

languages and XML languages and the common structure of XML documents. Sec-

tion 1.5 discusses concurrency problems and concurrency control techniques in

database and collaborative systems. Systems architectures in distributed systems are
discussed in section 1.6. Section 1.7 discusses contemporary web-based editing sys-

tems and the Hypertext Transfer Protocol (HTTP). The last section of the first

chapter outlines this thesis and its contributions to the field of Computer Supported

Cooperative Work (CSCW).

I. I. Emergence of XML

When Tim Berners-Lee et al invented the Hypertext Markup Language (HTML) in

1989 at CERN' they wanted to have a simple method for hypertext based information

exchange, that would easily work on different computer systems in use at CERN. At

that time many people were using TeX2 and PostScript' for their scientific docu-

ments. A few were using the Standard Generalized Markup Language (SGML)4.

Something simpler was needed that could be used with any type of terminal or work-

station running X Windows (MIT-Xll). HTML -a SGML application - was

designed for one purpose: the presentation of information on a TCP/IP based net-

work - the nucleus of today's Internet. In 1993 it was published as an Internet Draft.

SGML has a more general usage. As a so called Meta-language it is used to define

Mark-up languages such as HTML. But SGML was too complicated to be successful

and thus XML, a subset of SGML was defined in 1998. XML -a much simpler but

as flexible language as SGML - was originally (like its predecessor) designed to meet

the challenges of large-scale electronic publishing. Today XML also plays an in-

creasingly important role as an exchange format between applications'. XML became

very successful because of its simplicity. It is relatively human-legible and at the

European Organization for Nuclear Research, CERN, Geneve, Switzerland
2 TeX typesetting system invented by Donald Knuth

PostScript programming language for printing graphics and text. Introduced by Adobe in 1985.

SGML: ISO 8879: 1986 Information Processing - Text and Office Systems

The X Window System provides a way of writing device independent graphical and windowing soft-

ware that can be easily ported from machine to machine. It is maintained by X. Org. Retrieved July 15,

2007 from http: //www. x. org

6 The role of XML today: http: //www. w3c. org/XML/, retrieved October 30,2007

2

same time it facilitates processing by a computer. Today a vast number of applica-

tions exist that are defined in XML. For example, the successor of HTML, called
XHTML' is defined as an XML application. Other examples are X3D8 (an XML

compliant successor of VRML), SVG1° and MathML".

1.2. Meta-syntax for the specification of programming Ian-

guages

Every computer language has a grammar that defines it. Almost every programming

language can be described using the Backus Naur (Nauer et al. 1963) Form (BNF).

BNF12 is a so called formal meta-syntax to express context-free grammars. It can be

used to describe the syntax and the formal grammar (context -free grammar13) of a

programming language. For special cases, where BNF or EBNF (Enhanced Backus

Naur Form) cannot be used, the rules are defined in a descriptive way. Once a pro-

gramming language has been defined, it can be used to write a program.

1.2.1. Parsing of programs

A parser is a computer program or a component of a program that analyses a se-

quence of tokens and determines the grammatical structure of an input with respect

to a given formal grammar. Before a parser can start to work, a lexical analysis of the

program's source code is performed by a so called scanner. The scanner checks the

input for lexical correctness and generates a token sequence, which is passed to the

parser (see figure 1.1).

Extensible Hypertext Markup Language: http: //www. w3c. org/MarkUp/, retrieved October 30,2007

EXtensible 3D. Draft specification committed to ISO/IEC JTC1/SC24 for registration December

2002: http: //www. web3d. org/x3d. html, retrieved October 30,2007

Virtual Reality Modelling Language. International Standard ISO/ IEC 14772-1,1997

10 Scalable Vector Graphics 1.0 Specification
, 2001: http: //www. w3. org/TR/SVG/, retrieved October

30,2007

Mathematical Mark-up Language (MathML) 2.0., 2001: http: //www. w3. org/TR/MathM12/, retrieved
October 30,2007

12 Backus Naur Form: a formal notation to describe the syntax of a given language. John Backus and
Peter Naur in 1960

" From Wikipedia (http: //www. wikipedia. org), retrieved October 30,2007: A formal language is con-

text-free if there is a context-free grammar which generates it

3

Programming BNF
Language ---ý, (formal

text free grammar) meta synl

Program I
"j Scanner tokens. 1

Parser ok Syntax
Sourcecode Jý Tree

Errors

Figure 1.1: Parsing of a computer program

The job of the parser is to check if the token sequence provided by the scanner, com-

plies to the grammar of the respective programming language. If no lexical or

grammatical errors are detected the parser builds a data structure such as a concrete

or abstract syntax tree. The syntax tree is then further processed by a semantic ana-
lyser.

"hello" Lexically correct
"xjsk§? " Lexically incorrect

Table 1.1: Example for lexically correctness in the English Language

In the English language, for example, a token sequence - that is a sequence of words

- can form a sentence if the token sequence follows certain grammatical rules.

"Paul is no chair hello" Lexically correct but grammatically incorrect

"Paul sits green fish" Grammatically correct but semantically incorrect
Table 1.2: Example for grammatical correctness in the English Language

1.2.2. Semantic correctness

As seen above, the sentence "Paul sits green fish" is grammatically correct but se-

mantically incorrect. It just does not make sense. To recognise the meaning of a

4

sentence, the words have to be seen in their context. Similar problems occur in com-

puter languages. Parsers for programming languages that are defined using a context-

free grammar do not check the semantic correctness of a program's source code. The

semantic of a program is checked by a semantic analyser.

int x= "no int"++ Syntactically correct but semantically incorrect

because the types do not match. The statement

"no int" is not an integer and can not be incre-

mented.
int y=1+2; Semantically correct, I and 2 are of the type in-

teger.
Table 1.3: Example for semantically incorrect program code

Semantic analysis is the process of examining the types and values of the statements

used to make sure they make sense. During the semantic analysis, the types, values,

and other required information about statements are recorded, checked and trans-

formed to enable the code generator to produce unambiguous executable machine

code or intermediate code (e. g. in the case of the Java programming language). Table

1.3 shows an example for semantically incorrect and correct C/C++ program code.

Compiler
Program source

Scanner
Symbol (Lexical Analyser)
Table

Token
nce Manager seque Parser

(Syntax Analyser) V
C Syntax =

structure
Semantic Analyser w Symbol Table

Syntax
structure

with Code Generation/
semantic Optimisation
attributes

Figure 1.2: Compiler tasks and structure

5

A computer program language is an instruction language that uses instructions and

commands and defines actions that are then carried out by an executive unit. Com-

puter programs usually are parsed, semantically analysed and then translated (code

generation and optimisation) into a machine language or an intermediate language.

This process of scanning, parsing, semantic analysis and translation is performed by

a computer program called a compiler (figure 1.2). The executive unit in that case

can be the core processing unit (CPU) of a computer (compiled code) or an interpret-

er (in the case of an interpreted programming language).

This characterises the main difference of programming languages to XML: In gener-

al XML is not an instructing language. XML is a language to structure information

and is in most cases only parsed and not compiled or interpreted. Thus we will re-

strict our discussion to parsing of XML documents in this introduction.

1.3. XML for the specification of XML languages

XML is a de facto standard specified by the Word Wide Web Consortium (W3C). In

contrast to SGML it is not an ISO (International Organisation for Standardisation)

standard. As mentioned, XML is not a programming language like for example C14

or Pascal's but a language to structure information. It is a so called Meta Language,

but there are still many similarities to programming languages. The definition of
XML is split into two parts. The first part defines the syntax of an XML compliant
document and the second part defines the grammatical rules of an XML document

type.

1.3.1. Syntax rules

The syntax rules are mandatory for all XML documents. The syntax or so called
"mark-up" rules themselves are defined in BNF. If an XML document complies to

these rules it is called "well formed". The mark-up rules, for example, define the

nesting of tags in an XML document. Table 1.4 shows an example for proper and im-

proper nesting of tags.

The C programming language (Kernigham and Ritchie 1988), ISO/IEC Standard 9899.

The Pascal programming language was developed by Niklaus Wirth in 1971, ISO Standard 7185.

6

<book>

<title>MyBook</title> Proper nesting of tags
<chapter>

<heading>XML</heading>

</chapter>

</book>

<book>

<title>MyBook</title> Improper nesting of tags
<chapter>

<heading>XML</heading>

</book>

</chapter>

Table 1.4: Example for proper nesting and improper nesting

1.3.2. Grammatical rules

1.3.2.1. DTD

The grammatical rules of an XML document type can be defined in a so called Docu-

ment Type Definition (DTD). The DTD is based on a meta-syntax that itself is

defined in BNF. An XML document type is a document of a specific type. For ex-

ample a book is one document type and an application form is another document

type. Each document type has certain properties that distinguish it from another doc-

ument type. In XML a DTD is used to describe a set of document types by defining a

context free grammar for said document type. A book, for example, is a document of

a certain type with a certain structure. A book usually consist of a title, a table of

contents, a preface and many chapters. Each chapter has a title and different sections

and so on. Every book complies with the same rules. For example you will not find a
book without a title or chapters. It can also be said that a DTD defines an XML lan-

guage or application. A DTD that defines an XML language for structuring books

could look like the code snippet below.

7

<! ELEMENT book (title, subtitle*, bookinfo?, toc?,

(dedication I preface)*, (chapter I part)*,

(appendix I bibliography I colophon I glossary

reference)*) >

<! ELEMENT chapter (indexterm*, title, chapterinfo?,

(indexterm I refentry I simplesect I sectl I section)*) >

This excerpt from the DocBook Lite16 DTD is an example for an XML language

definition. For a DTD the text content of a document it is not relevant, but the struc-

ture is. It would not be relevant, for example, what the title of a single book is but it

is relevant that the title is mandatory. It can be said that in XML, document types are

specifications for content types and their relations (Michel 1999). That is a DTD

defines which elements are allowed in a specific XML document type and how these

elements can be mixed to obtain a valid document instance. The XML 1.0 specifica-

tion provides the syntax of DTDs and the rules for the XML parsers to validate the

documents on the basis of the DTD (Arciniegas 2002). As mentioned, before, a DTD

specifies hierarchy, containment and cardinality of elements for a document type.

The term hierarchy relates to the order of elements in a document. The term contain-

ment relates to the content type of possible elements, for example, text, numbers,

character entities or other elements. Referring to cardinality, a DTD can specify that,

for example, an element can occur zero times or once, zero times or arbitrary times

or once or arbitrary times within an element in a document.

A DTD has some limitations. For example it is not possible to specify, that an ele-

ment can occur only twenty times within a document. The most serious limitation is

probably the missing typing of character data. It is not possible to determine that the

content of an element has to be a certain type of string or number. This can lead to

misuse of certain elements within an XML document:

<phone>0711-685-8362</phone>

<phone>this is not a valid phone number</phone>

16 DocBook Lite. DTD, O'Reilly. V. 1.19 , 2003

8

In the above example this misuse of the phone element is obviously a semantic prob-
lem. From the view of the parser, both elements are valid and comply to the element
declaration:

<! ELEMENT phone (#PCDATA)>

These and other limitations of the DTD were the motivation for the development of
XML Schema. XML Schemas do a better job of describing data format (hierarchy,

containment, and cardinality) and constraints (data type, range and default values).

1.3.2.2. XML Schema

Another way to define the grammar of an XML document type was introduced in

May 2001: XML Schema". This W3C recommendation is a de facto standard for de-

fining XML document types. In contrast to DTDs, XML Schema documents are
XML documents themselves. This makes it possible to process them with standard

XML tools and thus facilitates application's awareness of the underlying grammar.

The main advantage of XML Schema in comparison to the DTD is that a document

type can be specified in much more detail. XML Schemas have an extensible hier-

archy of data types.

An example XML Schema definition:

<? xml version="1.0" encoding="UTF-8"? >

<xs: schema xmins: xs="http: //www. w3. org/2001/XMLSchema">

<xs: complexType name="persondefinition">

<xs: sequence>

<xs: element name="firstname" type="xs: string"/>

<xs: element name="lastname" type="xs: string"/>

<xs: element name="birthday" type="xs: date"/>

</xs: sequence>

</xs: complexType>

<xs: element name="person" type="persondefinition"/> </xs: schema>

Basic types like string, date and time can be used directly for elements. User defined

types are possible. In the above example a data type called "persondefinition" is

" http: //www. w3. org/XML/Schema, retrieved October 30,2007

9

defined. A person has a sequence of the elements "firstname", "lastname" and "birth-

day". The element types "xs: string" and "xs: date" are predefined in the XML

Schema specification. Besides the definition of data types, one of the features of
XML Schema is that it enables the specification of precisely the number of elements

that appear within a document. This is done by specifying a "minOccurs" and a
"maxOccurs" attribute in the element definition. It is also possible to define keys to

unambiguously identify an element within a document. This technique is an exten-

sion of the concept of primary keys in relational databases. There are many other

advantages of XML Schema over the DTD that in some areas will possibly lead to a

substitution of DTDs by XML Schema. One example is named typing which allows

to define complex data types. A complex data type is the abstract definition of a

structure within an XML document. In the above example "persondefinition" is such

a complex data type. This makes it very useful for data exchange (Van der Vlist

2003), (Wyke and Watt 2002), (Walmsley 2001).

1.3.3. Parsing of XML

Similar to computer programs that are written in a programming language, XML

documents can be checked for errors. This is done in the same manner as with pro-

gram source code. An XML document is checked for lexical correctness and

tokenized by a scanner. The tokens are the input for the parser. The parser then

checks if the document is compliant to the XML mark-up rules. If a document com-

plies to the mark-up rules it is called a "well formed" XML document instance. If the

document is "well formed" it can be checked by a parser for compliance to a certain
DTD or XML Schema. A parser that is used to check a document on compliance to a
Document Type Definition is called a validating parser. A "well formed" XML docu-

ment that complies to a Document Type Definition, is called a valid XML document.

10

XML Document Mark-up Type Definition Rules
(Syntax) (Grammar)

ýýýý o Document Scanner tokensParser , valid swell formed' Parser Document
XML

(Instance)

Errors

Figure 1.3: Process of XML parsing

If errors occur during the parsing process they are handled accordingly. A document

can be "well formed" without specifying a relating DTD. If an XML document does

not specify a DTD to which it can be checked on compliance it is not a valid docu-

ment. In some applications such errors are not relevant and are ignored. In other

cases it is critical to the application, that the document is valid and therefore must

specify a relating DTD.

1.4. Structure of XML documents

As mentioned earlier, XML is a method to structure information. This structured in-

formation is then perceived by a human or processed by a computer. XML

documents have a certain type of structure; a hierarchical structure. Thus XML docu-

ments can be regarded, in general, as hierarchically structured information.

Hierarchically structured information can be represented as ordered trees, in which

the children of each node have a designated order. Branch nodes depend on their par-

ent node and have child nodes. Leaf nodes do not have child nodes. Each node in a

tree has a label and a value. Figure 1.4 shows a tree representation of an example

XML (XHTML) document.

11

<HTML>
<HEAD>
</HEAD>
<BODY>

<H1>
Welcome
</H1>
P>

Simple XML Document
</P>

</BODY>
</HTML>

Figure 1.4: Tree representation of a simple XHTML Document

1.4.1. Editing trees

The structure of XML allows us to represent an XML document as an ordered tree,

and work with it in that way. Thus editing of XML documents can be generally con-

sidered as editing of trees. The editing of trees can be described with four

fundamental operations: insert, delete, move and update. The first three are structural

operations - they make changes to the structure of the tree. The fourth is a mutational

operation - it changes the contents (value) of a node without changing the structure

of the tree. In the following these four fundamental operations are briefly discussed.

The insert operation creates a node at a given location in the tree. A node x with label

I and value v is inserted as the kth child of node y of the tree. The value v is optional,

and is assumed to be null if omitted. In order to perform an operation on a node it has

to be identified somehow. Different methods for the identification of a node within a
hierarchical document exist as is further discussed in chapter 3. In the following ex-

amples a node is identified by its name. In figure 1.5 the node "title" is inserted as the

first child of the node "head".

12

Figure 1.5: Example of an insert operation

The delete operation deletes a node x from a given location
.y

in the tree. This opera-

tion only deletes a leaf node; to delete an interior node, first its descendants must be

moved to their new locations or deleted. In the following example the child node of

the node "P" is deleted from the document tree.

Figure 1.6: Example of a delete operation

13

before insert after insert

before delete after delete

The move operation changes the structure of the tree by moving an existing node x
from one location y within the tree to another location z. The entire sub-tree of x is

moved along with x. In the following example the node "Hl " including its child node
is moved from node "BODY" to node "P".

Figure 1.7: Example of a move operation

The update operation updates a value on the node x at a given location y in the tree.

Strictly speaking, the minimal complete and sound set of operations is insert and de-

lete. The update operation may be expressed as a delete on the relevant node and an
insert to create a node with the changed value in the same location. The move opera-
tion may similarly be expressed as deletion of the nodes in the old location and a

series of inserts to reconstruct the branch in the new location. However, such a min-
imal operation set would be impractical, especially in a database context. Chapter 3

discusses the set of operations used in this thesis' consistency maintenance algorithm
for XML (CMAX).

14

before move after move

I. S. Concurrent editing

In a collaborative editing environment and especially in a real time collaborative

editing system, it can occur that two or more authors want to access the same docu-

ment or even the same part of a document concurrently. In this case consistency

maintenance mechanisms are needed to circumvent errors and maintain the consist-

ency of the edited document. Research in consistency maintenance in the past has

been driven by the work in database- and distributed systems. Therefore, in the next

section consistency maintenance issues in these fields are discussed. Later consist-

ency maintenance issues in collaborative editing systems are examined.

1.5.1. Concurrency problems in database systems

If several users concurrently access a database, the following problems can occur
(Date 2003):

" Lost update

" Uncommitted dependency

0 Inconsistent retrieval

The following sections briefly describe these problems by giving examples.

1.5.1.1. Lost update

An example illustrates the lost update problem. A database holds the following table
"Account":

Account Number Balance

1 110

2 -20
Table 1.5: Account

Two transactions are executed concurrently. Each transaction consists of three opera-

tions. The first transaction (T1) reads the balance of account 1, then the balance is

decreased in memory by 20. The last step is to write the new value (90) to account 1.

The second transaction (T2) reads the balance of account 1 (110) at nearly the same

time as T1. Then the read value is increased by 30 in memory. In the third step the

15

new value (140) is written to the database. The result of T, is lost because the value

written by T, (90) is overwritten by the value written by T2 (140). The execution of

the two transaction results in a balance of 140. The final result should be 120, but the

update of T, was lost.

Transaction 1 Transaction 2 Balance account 1
Read balance from account 110
number 1 into memory

- ---- ---- I Decease value in 110
memoryy20

- ---- ---- Read balance from account 110
- Time j-

rhe ne- wvalue to
number 1 into memory

- ----
balance of account 1 and 90
commit transaction
---- Increase value in 90

memory by 30
-- ----- Write new value to

balance of account 1 140
and commit transaction

Figure 1.8: Lost update

1.5.1.2. Uncommitted dependency

This is an inconsistency problem which is similar to the lost update problem. For ex-

ample, this time the balance of account 1 is increased by 30 in the first transaction

(T1) (now it is 140). In the second transaction (T2) the new value of the account's bal-

ance is read into memory (140). Then the first transaction is aborted (because of

some error). Now T2 is based on the wrong value (140 instead 110). The resulting
balance value is 120 but it should be 90, because Ti was aborted (rollback transac-

tion). The reading of the accounts value in T2 is called a "dirty read". When T2

modifies the "dirty read" value of account I and writes it back to the database this is

called a, "dirty write".

16

Transaction 1 Transaction 2 Balance account 1
Read balance from account
number 1 into memory
Increase value in
memory30

----- Write new value to
balance of account 1

110

110

140
HIM -----

Read balance from account 140 number 1 into memory

Rollbads transaction 110

Decease value in 110 memory by 20
Write new value to
balance of account 1 120
and commit transaction

Figure 1.9: Uncommited dependency

1.5.1.3. Inconsistent retrieval

Inconsistent retrieval is another concurrency control problem that occurs when a data

item is read in one transaction before another transaction updates it and a second data

item is read after being updated by the current transaction. For example, consider a
database table like the one in the previous example. Figure 1.10 contains two ac-

counts. A customer transfers money from account 1 to account 2 (transaction T1). At

the same time, another customer starts a second transaction (T2) and reads the bal-

ance of the accounts I and 2. The operations of the two transactions (Ti, T2) are

executed according to the schedule shown in figure 1.10.

17

Balance Balance
Transaction 1 Transaction 2 account l account 2
Read balance from account
number 1 into memory

110 -20
Decrease value account 1 in 110 -20 memory30
Write new value to 80

'20 balance of account 1 Time ---- ---- -- --- Read balance from account 80 -20
-

number 1 into memory_
_ Read balance from account 80 -20 number 2 into memory-

Read balance from account 80 -20 number 2 into memory
Increase value account 2 in 80 -20 memory by 30
Write new value to 80 10 balance of account 2
Commit transaction 80 10

Commit transaction 80 10

Figure 1.10: Inconsistent retrieval

The first customer transfer interferes with reading the account balance by the second

customer. Despite the interference, the values in the database table are still correct
but the second customer only sees some of the update transaction results. This means
he sees an incorrect account balance of account 2. The problems mentioned above

can occur if transactions are interleaved arbitrarily. In the above examples, if T, and
T2 were executed one at a time in either order, the results would be correct. If the ef-
fect that is produced by the execution of a set of transactions is equivalent to the

effect that is produced when these transactions are executed in an arbitrary order, it is

called serial equivalence (Bernstein, Goodman et al. 1987). The serial equivalence is

one of the consistency properties that have to be preserved by database systems.

1.5.2. Concurrency problems in collaborative editing systems

In collaborative editing systems in general, preserving serial equivalence is very im-

portant as well. For example if team members work on a single document

concurrently, all copies of the document have to be identical at all sites after execut-
ing the same set of operations. To maintain serial equivalence different concurrency

18

control schemes have been developed, including timestamp ordering and locking (see

section 1.5.3). The next sections deal with inconsistency problems in collaborative

editing systems that are based on a tree data structure similar to XML tree structures.
Examples of such systems are MU3D (Galli and Luo 2000) and GROVE (Ellis and
Gibbs 1998). These systems use the replicated architecture (see section 1.6.2) to

achieve good responsiveness and to avoid a single point of failure in the system. That

is, operations that are executed on a local copy of a document are broadcast to the

other sites and executed there. Inconsistency problems occur here due to the delay

between the execution of an operation at a local site and the execution of the same

operation at the remote sites. Figure 1.11 shows an example scenario:

Site 1 Site 2 Site 3

time

V

Figure 1.11: Scenario of a real-time group editing session

04

There are four operations executed 01,02,03 and 04. At site 1 the operations are ex-

ecuted in a different order than at site 2 and site 3. The execution order at site I is as
follows: 01,02,04,03. At site 2: 02,01,03,04 and at site 3: 02,04,03,01.

19

101 1 -%^

1.5.2.1. Divergence

If the operations 01,02,04,03 are not commutative, the final editing results at each

site may be different. A divergence between the different sites exists. The figure be-

low shows the tree structure of a very simple XML document at two editing sites
(Site 1 and 2).

Site 1 Site 2

Figure 1.12: Divergence example: identical sites

Each of the two sites maintains a local copy of this document. At the beginning the

tree structure at both sites is identical.

Operation O, creates a child node A below node 2 at the first position. Operation 02

creates a different child node B also below node 2 at the first position. O, and O2 are

nearly concurrently executed on the local document copy before they are broadcast

to the remote site. Due to the delay in execution the order of the operations O, and 02

is different at each site. At site 1, the operation O, is executed before 02. At site 2,

the operation 02 is executed before O,. The results at sites I and 2 are divergent:

Site I Site 2

CB CA)

Figure 1.13: Divergence example: divergent sites

20

At site 1 operation O, is executed first and creates a child node A at the first position
below node 2. Then 02 is executed and creates a child node B at the first position be-

low node 2. At site 2 the order of the nodes A and B is opposite to the order of site

one after their creation.

1.5.2.2. Causality violation

As shown in the scenario operation 03 is generated after the arrival of O, at site 2. If

03 was created because of 01 at site 2 then 03 is dependent on 01. This is also called

a causal ordering relation between 01 and 03. Sun and Ellis (1998) define the causal

ordering relation "-*" (following Lamport (1978)) as follows:

Definition 1.1: Causal ordering relation "--" ".

Given two operations OQ and Ob, generated at sites i and j, then Oa -+ Ob, if as fol-

lows:

1. i =j and the generation of Oa happened before the generation of Ob, or

2. iOj and the execution of Oa at site j happened before the generation of Ob, or

3. there exists an operation Ox, such that Oo --i Ox and Ox -* Ob.

Definition 1.2: Dependent and independent operations.

Given any two operations Oa and Ob.

1. Obis dependent of Oo if Oo -+ Ob.

2. Oo and Ob are independent (or concurrent), expressed as OQ 11 Ob, if neither

Oa -º Ob, nor Ob -- O8.

In the example scenario, 03 is executed at site 3 before O,. Thus 03 at site 3 refers to

a non-existent context, that is to be created by O. A user at site 3 would observe the

effect of 03 before observing the cause in 01. This problem is called causality viola-

tion and should be prohibited for collaborative editing systems, where a real time

synchronised interaction among multiple users is required. Causality violation in a

tree structure can also lead to a state where one operation can not be executed be-

cause the operation it is depending on has not been executed yet. For example in the

scenario shown O, is executed on site 2 and creates a node A below node l (see fig-

ure 1.14). The dependent operation 03 is then executed on site 2 and creates a node B

21

below the new node A. At site 3 the operation 03 is to be executed before 01. This

will result in an error state since node A at site 3 has not yet been created, thus node
B cannot be created below A.

Site 2 Site 3

,
0i

2A

/03
B`

Figure 1.14: Causality violation

1.5.2.3. Intention violation

Intention violation occurs if the effect that was intended when executing an operation
is somehow not achieved. Intention violation can occur when executing structural or

mutational operations and a number of algorithms exist that try to preserve intentions

in collaborative editing systems (see chapter 3). An example for an intention viola-

tion problem that is difficult to solve is as follows: If conflicting operations are

generated to change the same attribute value or content of a node in an XML docu-

ment, the effect of some operations may be lost. For example, the operations 01 and
02 are update operations on node A of a document. 0 changes the value of attribute

a of node A to x. 02 changes the value of attribute a of the same node toy. Both oper-

ations are executed locally at the same time and then their change sets are sent to the

remote sites to be executed there. The result is a different attribute value at each site

and confused users. Since both operations are changing the same attribute to different

values it is impossible (if the attribute only allows one value state) to accommodate

their conflicting effects in the same target attribute. Either the attribute value is set to

x or to y but not both. A consequence is that conflicting operations cannot be re-

solved automatically. Therefore, in a conflict situation, a consistent picture of what

other users have done or of other users intentions is not guaranteed. Someone has to

decide which attribute value is the correct one. But it may not be possible in all cases

22

to resolve their conflict. If convergence is somehow achieved then only one opera-

tions effect can be preserved and the other is lost.

The question arises: would the users execute their operations on the node, if they

knew that another user is going to do a change on the same node as well? This is one

point where awareness mechanisms can help to avoid conflicts.

1.5.2.4. Semantic inconsistency

In a collaborative editing environment, the inconsistency problems discussed earlier

can lead to a syntactic inconsistency of the document. Existing algorithms used in

real time collaborative editing systems solve the syntactic inconsistency problems,

but they do not enforce semantic consistency. Ignat and Norrie (2002) give an ex-

ample for the semantic inconsistency problem in a real time collaborative text editor:

A shared document contains the text: "Helo everybody! ". One user tries to correct

the misspelled word "Hello" and inserts the letter "1", aiming to obtain the text:

"Hello everybody! ". Concurrently another user deletes the word "Held" and inserts

instead the word "Bye", in order to obtain the text "Bye everybody! ". Depending on

the algorithm that is used for consistency maintenance, the result is either a semantic-

ally inconsistent result or the change of one user is lost completely. Operational

transformation (explained later) algorithms such as for example the GOT algorithm

would result in following text: "Byel everybody! ". As Ignat and Norrie state cor-

rectly, there is no automatic way to execute these conflicting operations and obtain a

semantically consistent result. For the algorithm, the text "Byel everybody! " is cor-

rect. This is true with regard to the syntax. The GOT and other similar algorithms are

fine-grained algorithms that work on character level. That is, the consistency is main-

tained in such a way that every character that is typed reflects in the document. In the

natural language a character does not have a semantic value associated with it. This

is the reason for the semantically inconsistent result "Byel". If the consistency main-

tenance algorithm would work on word level instead of character level, then a word

like "Byel" could not possibly be created undeliberately. Ignat and Norrie give an-

other example described in the paragraph below for semantic inconsistency, when

the consistency maintenance algorithm works on word level. That is if all operations

delete or insert whole words (Ignat and Norrie 2002):

The shared document contains the sentence: "The child go alone to school. ". A user

23

deletes the word "go" and inserts "goes" instead, intending to obtain: "the child goes

alone to school. ". Simultaneously, another user inserts the word "can", changing the

text into: "The child can go alone to school. ". Unfortunately, after each user receives

the operations performed by the other one, the result is: "The child can goes alone to

school. ". Here semantic consistency could not be enforced either. The conclusion

that is drawn is that working at any level of granularity can result in semantic incon-

sistencies but working at a higher level usually translates into a more semantically

consistent final result. Consistency maintenance algorithms today do not consider the

context of a letter, word, sentence or paragraph. This is left to the users. The users
have to know if a text is semantically correct and have to solve conflicts like the one

above manually. Ignat and Norrie therefore propose an algorithm (treeOPT) that is

based on a hierarchical structure of a text document to overcome the disadvantages

presented above. This is done by allowing a change to the level of consistency main-

tenance as needed to either character, word, sentence or paragraph level.

It can be concluded that a hierarchical document structure has advantages over a lin-

ear document structure. This thesis therefore makes use of the hierarchical structure

of XML documents and their properties, when it comes to consistency maintenance.

1.5.3. Concurrency control techniques

The next sections give an overview of the most common techniques for concurrency

control. Concurrency control is a common method for prevention of inconsistency in

database systems. Bernstein, Goodman et al. (1987) define concurrency control as
follows:

"Concurrency control is the activity of coordinating the actions of processes that op-

erate in parallel, access shared data, and therefore potentially interfere with each

other. "

Concurrency control techniques are used to maintain the consistency of a shared doc-

ument. Two different types are discussed: techniques for conflict prevention and

techniques for conflict resolution.

24

1.5.3.1. Locking

Locking is a concurrency control mechanism often used in database management

systems to preserve serial equivalence and to synchronise access to shared data. The

basic principle behind locking is quite simple but not very convenient for real sys-

tems. Thus optimised locking techniques and algorithms have been developed to

address the real world problems of these systems. In the next section the two main

locking strategies, pessimistic and optimistic locking, and some of the different vari-

ations are discussed.

Pessimistic locking

Emerged from synchronisation techniques used in operating systems (such as sema-

phores and monitors etc.), the oldest and easiest technique for concurrency control is

the exclusive locking of data objects. In order to access a data object, an exclusive
lock has to be acquired which excludes all other transactions from accessing the

same data object. If a transaction T2 wants to acquire a lock that is being held by an-

other transaction Ti, T2 has to wait until T, releases the lock. In the case of many

parallel transactions accessing the same data objects, this can lead to a bad system

performance. In order to improve the performance shared locks (or read locks) were
introduced. The improved performance is based on the assumption that reading of
data objects occurs much more often than writing. A shared lock therefore allows

parallel transactions to read the same data object but not to modify it. In order to

modify a data object, again, an exclusive lock has to be acquired.
This technique is called SX (or RX) locking. Figure 1.15 shows the compatibility of

the two locking modes (Shared and eXclusive).

Current lock

-a NL SX
aý
a) 0S++-+ (compatible)

o
X+ NL (no lock) -- it

Figure 1.15: Compatibility matrix of SX-locking mechanism

NL (no lock) denotes the situation where a data object is currently not locked by any

25

transaction. A lock (shared or exclusive) is in that case always permitted. If another

transaction holds currently a shared lock on a data object, another shared lock can be

acquired on the same data object. Shared locks are compatible, that is a data object

can be read by any number of transactions concurrently. A request for an exclusive
lock will only be successful if the data object is currently not locked. If a lock con-

flict occurs, the requesting transaction is blocked and has to wait until the lock on the

requested data object is released. This blocking can lead to a deadlock situation,

where transactions wait for each other to release the lock on a data object and thus

never finish. There are different methods for preventing and avoiding deadlocks. A

prevention method is, for example, preclaiming or static locking, where all necessary
locks are acquired before the beginning of the transaction. Methods for deadlock

avoidance are, for example, immediate restart (no waiting) (Haerder 2001), wait
depth limited (WDL) (Franaszek, Robinson et al. 1992) or the use of transaction

time-stamps (wait/die, wound/wait) (Rosenkrantz, Stearns et al. 1978). These tech-

niques are further discussed by Haerder (2001).

Another pessimistic locking technique is the so-called two phase locking (2PL). In

the first phase (growing phase) a transaction acquires all necessary locks. In the

second phase (shrinking phase) the transaction releases all the locks again (see figure

1.16).

Growing phase

Start of transaction

Figure 1.16: Two phase locking

Commit

If problems occur during the shrinking phase of a transaction and it has to be rolled

back, a "dirty read" can occur (see section 1.5.1.2). One possible way of preventing a

Shrinking phase

26

dirty read situation is the so-called strict two phase locking. The complete shrinking

phase is thereby performed at the end of the transaction when a successful comple-

tion of the transaction is guaranteed. Figure 1.17 shows a strict two phase locking

transaction flow.

Start of transaction Commit

Figure 1.17: Strict two phase locking

Optimistic locking

The optimistic approach for concurrency control is based on the assumption that con-
flicting operations are rare and thus preventive locking of data objects would be an

unnecessary high expense (Kung and Robinson 1981). The flow of transactions is not

affected until these are committed, so nearly parallel work on the data is possible. At

the end of a transaction it is determined if conflicting operations have occurred.
Following this technique a transaction is separated into three different phases :

1. In the read phase, data is read but write operations are performed on private

copies of the data objects only.
2. After the transaction is committed the validation phase begins. In this phase it

is determined that the transaction will not cause a loss of integrity or that it

will return the correct result. If the validation fails, the transaction is backed

up and started over again as a new transaction. In this case conflicts are re-

solved by rollback of one or more of the transactions involved. This means

that more rollbacks occur than with pessimistic locking techniques. An ad-

vantage is, that deadlocks are not possible, in contrast to the pessimistic

locking approach.

27

3. If it can be established during the validation phase that the changes which the

transaction made will not cause a loss of integrity, the local copies are made

global in the write phase.

The execution of operations on private copies of data objects has advantages and

drawbacks. One advantage is that it yields a general approach to protecting other

transactions from "dirty" read or write operations. A higher parallelism can be

achieved due to the possibility of synchronous modification and reading of unmodi-
fied data objects.

Read Validation Write

Commit

Time

Figure 1.18: The three phases of a transaction

lt is easy to realise the back up of transactions by merely discarding the changes on

the private copies of the data objects. A disadvantage is that private copies of data

objects lead to a higher memory demand of the system and require complex buffer-

ing mechanisms (Peinl 1987). The write phase can become very costly if the

synchronisation granularity is small and thus a large number of write operations have

to be executed. A problem is the danger of "starvation". This occurs if transactions

constantly fail to validate. This can happen especially with very long transactions,

because they have a large read-set and have to validate against many transactions.

Additionally the late back up of a transaction causes a lot of unnecessary performed

work.
It is possible to combine pessimistic and optimistic synchronisation strategies. Ex-

amples for such hybrid approaches can be found in database systems such as IMS

Fast Path (Gawlick 1985) or GemStone (Butterworth, Otis et al. 1991).

The idea is to combine the advantages of both techniques. But the costs of realisation

are very high and it is not guaranteed that the advantages of both approaches are ever

achieved. IMS Fast Path uses a special combination of pessimistic and optimistic

28

synchronisation. Data objects are thereby processed unsynchronised and at the end of

the transaction during the validation and write phase they are locked. Due to the re-

duction of the locking duration the probability of blocking other transactions is

reduced considerably, compared with other pessimistic locking techniques.

A very similar approach is used in various version control systems such as the Con-

current Versions System18 (CVS) and Subversion'9 (SVN). Changes on data objects

are thereby made on the client side at first without locking. As soon as the changes

are committed, the data objects are locked on the server. Now it is determined wheth-

er conflicts with other transactions exist (validation). By using timestamps it is

determined if a data object has been changed since its transfer to the client. If valida-

tion fails, either the transaction is backed up and repeated or the client is notified of

the conflict. This approach is called optimistic locking. The advantage of this tech-

nique is again the short locking duration during the validation phase. A problem is

the relatively high probability of validation faults, so that this approach is mainly re-

stricted to application areas with a relatively small number of concurrent users . This

restriction is highly dependent on the locking granularity and with an accordingly

fine granularity the probability of lock conflicts is extremely reduced.

Locking granularity

The locking granularity is a very important factor for the performance of systems that

use a locking strategy for maintaining consistency. The locking granularity affects

the number of lock conflicts as well as the administration effort. A coarse granular-

ity, for example on single files, generally results in a higher probability of lock

conflicts in a collaborative system. The advantage is that a transaction needs to ac-

quire less locks and therefore the administration effort is relatively small. A finer

granularity on the other hand produces a large administration overhead for maintain-

ing a list of all current locks. The advantage is a low probability for lock conflicts

and a high parallelism. Support for a flexible locking granularity (multi granularity

locking (Bernstein, Goodman et al. 1987) or hierarchical locking) is a solution to

these problems. In contemporary database systems the locking granularity varies

from table locks, page locks to row level locking. Most of these systems support two

1s Concurrent Versioning System (CVS): http: //www. nongnu. org/cvs/, retrieved October 30,2007

19 Subversion (SVN): http: //subversion. tigris. org/, retrieved October 30,2007

29

or more granularity levels. Very few systems are able to lock single entries in a data-

base table or even single characters. In most cases a very fine granularity is not

necessary in database management systems in contrast to collaborative editing sys-

tems. The table below compares coarse and fine granularity locking strategies.

Coarse granularity Fine granularity
Probability of lock conflicts High Low

Number of locks to be acquired Low High
Administration effort Low High

Parallelism Low High
Table 1.6: Comparison of coarse and fine granularity locking

Working with a flexible granularity level can also help in maintaining the semantic

consistency (see section 1.5.2.4). Ignat and Norrie (2003) propose the use of optional
locking on different granularity levels in addition to their operational transformation

approach for consistency maintenance. They propose five levels of granularity in a

text document: document, paragraph, sentence, word and character. Each operation

that is to be executed is then executed on one of these levels only. Depending on the

type of document, the hierarchical depth can vary enormously. In this thesis therefore

a more general disposition of granularity levels is proposed in the form of a node set.
A node set is a partition of different disjunctive node types. A node type can be - de-

pending on the used XML data model2° (the logical representation of XML) -a
document, an element, an attribute, a processing instruction, a text or a comment. In

order not to use a specific data model a more general approach is: a node can either
be of type root, child or leaf. In a document tree every node x, together with its child

nodes, forms a node set with root node x. Every node y (that is no leaf node) owns

the node sets of its child nodes. A leaf node does not own any child nodes.

1.5.3.2. Turn-taking

Turn-taking is a very simple method for consistency maintenance. With a turn-taking

protocol, access to a shared resource is only granted to one, for example, user at a

20 Different data models can be for example: XML infoset, Xpath or the Document Object Model

(DOM).

30

time, so no inconsistencies can occur. The turn-taking protocol defines which user is

the next to access the resource. This is either done by technical means (implemented

in software) or by social protocols defined by the participants before their collabora-

tion begins. This technique is similar to the pessimistic locking strategy, but much

more restrictive, because it is always applied on the complete shared resource, for ex-

ample, a document or a database. Pessimistic locking is usually applied only on parts

of a shared resource, such as paragraph or a database table. Examples for collaborat-

ive applications that use a turntaking protocol are Microsoft's NetMeeting21 and

Hewlett-Packard's SharedX (Lauwers 1990). Concurrent editing is not supported by

these systems, because there is only one active user at a given time.

1.5.3.3. Timestamp ordering

The basic timestamp ordering (Bernstein and Newcomer 1997) approach uses

timestamps on data objects to preserve serial equivalence. The position of a transac-

tion is thereby determined by the timestamp that is attached to it at the beginning of

the transaction. Conflicting operations of different transactions have to be executed
in the order of their timestamps. A transaction therefore has to see all changes of

earlier transactions but must not see changes of later transactions. If these conditions

are violated, the transaction is backed up and repeated again with a new timestamp.

In order to validate these conditions, read and write timestamps are set for each read

and write operation. The read timestamps (RTS) and the write timestamps (WTS) re-

spectively thereby correspond to the last transaction that has changed the data object.
A read operation of a transaction T with timestamp ts(T) on a data object x is not per-

mitted if:

ts(T) < WTS (x)

This means that T is valid only if no later transaction than T has changed the data ob-

ject. In the case of a write operation, transaction T is only valid if no later transaction

has changed or read the data object. This means that a write operation of transaction

T is not permitted if

ts(T) < Max(RTS(x), WTS (x))

21 Microsoft Corporation. 2000. http: //www. microsoft. com/windows/netmeeting/, retrieved October 30,

2007

31

If one of these conditions is true, then the transaction accessing x is rolled back. Fig-

ure 1.19 shows a scenario, where transactions T, and T2 access the data object x in the

correct transaction order. However, when T, accesses data object y, this has already
been changed by transaction T3. The result is a rollback of T1.

W(x) r(y)
Ti F I ... ý Rollback

r(x)
T2

W(Y)
T3

Figure 1.19: Timestamp ordering scenario

This shows that the probability of a rollback grows with the duration of a transaction

because later transactions can access the same data objects. This means that in some

cases a "starvation" of a transaction can occur. Another problem is the possibility of
"dirty" writes due to uncommitted dependencies. However, timestamp ordering can-

not solve the problems of intention violation and causality violation. Therefore, and
because of the other problems, it is relatively unsuited for collaborative editing.

1.5.3.4. Causal ordering

With the causal ordering approach, operations may be generated and executed con-

currently. Local operations are executed immediately after their generation. This

leads to a good responsiveness. The execution order of the operations is constrained
by their natural causal order and it is defined by using the vector logical clock (Fidge

1991). Some remote operations may be delayed until all causally preceding opera-

tions have been executed. This approach can achieve causality preservation only and
does not address the problems of divergence and intention violation. Therefore, in

many collaborative editing systems, this approach is used in combination with other

concurrency control techniques. Operational transformation, for example, uses causal

ordering additional to transformation of operations in order to achieve causality pre-

servation.

32

1.5.3.5. Operational Transformation

Operational transformation (OT) is a technique for consistency maintenance by con-
flict resolution in collaborative editing systems. The main advantage of OT is that an

operation that is generated is executed instantly without any delay. In contrast to con-
flict prevention techniques such as locking or turn-taking, the user does not have to

wait until a lock can be acquired or a token is passed. In a collaborative editing sys-

tem, operations are executed directly on a local copy of a document and are then

distributed to the other sites and executed there. An operation that is received by a

site may be transformed before it is executed on the local copy. The transformations

are performed in such a manner that the intentions of the users are preserved and at

the end the copies of the documents converge. Various operational transformation al-

gorithms for collaborative editing applications that use a linear representation of the

document" have been proposed:

dOPT, adOPTed (Ressel and Nitsche-Ruhland 1996), GOT, GOTO , SOCT2 (Sulei-

man, Cart et al. 1997).

Most of these algorithms follow the same principles for consistency maintenance.
Therefore, in this section we will give a brief overview of these principles.
The operational transformation algorithm has been developed to oppose the problems

of divergence, intention violation and causality violation. A collaborative editing sys-

tem is thereby said to be consistent, if it always maintains the properties of

convergence, intention preservation and causality preservation.
To achieve causality preservation, a time-stamping scheme based on a vector logical

clock, is used. It allows the system to ensure that if an operation Oa "happened be-

fore" an operation Ob (see causal ordering relation "-+"), then Oa is executed before

Ob.

To achieve intention preservation and convergence, a total ordering relation "4 "

(Raynal, Singhai et al. 1996) between operations is defined. The total ordering rela-

tion defines which operation has to be executed in which order at each site (see

chapter 3 for a definition of the total ordering relation). Additionally all operations

that are executed at each site are stored in a history buffer. Based on this total order-
ing relation and on the history buffer, a undo/do/redo scheme is defined. If a new

22 The document that is to be edited.

33

operation O,, is received, all operations in the history buffer, that according to the

total ordering relation, follow O, are undone. This will restore the document state to

before their execution. Then O�, is executed and after that all operations from the

history buffer that were undone are now redone again. Additionally, the operations

are transformed before their execution in order to cope with the modifications per-

formed by other executed operations. To illustrate this, a collaborative editing

scenario without transformational operation is shown in figure 1.20. There are two

sites working on a shared document containing the text "efect". Consider, that the

text can be modified with the operation Ins(pc) for inserting a character c at position

p in the text. It is supposed that the position of the first character in the text is at posi-

tion p=1. The users 1 and 2 generate two operations: Ol = Ins(2f) and 02= Ins(6, s)

respectively.
When O, is received and executed on site 2, it produces the expected text "effects".

But when 02 is received on site 1, it does not take into account that O, has been ex-

ecuted before it. The final result therefore is a divergence between site 1 and 2.

In order to obtain a correct result, operation 02 needs to be transformed by taking

into account operation U. If 02 on site 1 is transformed into Ins(7, s) convergence fi-

nally is achieved.

Site 1 Site 2
efect efect

Ol
Ins(2, f)

O
Ins(6, s)

".
effect efects

02lns(6,
s'A

t
)1 Ins(2, f)

..
effecst effects

Figure 1.20: Incorrect integration of operations

34

Operational Transformation can only solve the problem of intention violation in

resolvable conflictual operations such as the operations described above (Imine,

Molli et al. 2003). It is not possible to solve non-resolvable conflictual operations us-

ing Operational Transformation. Non-resolvable conflictual operations are mutation

operation targeting the same object and modifying the same attribute to different val-

ues whereas the attribute can only have one valid value. To solve this problem

different approaches exist. One approach is to assign a priority to operations and ex-

ecute only the operation with the highest priority. Another approach is not to solve

the problem but to create a new version for the object and keep both operation ef-
fects. This means that at the end someone has to decide which version it the correct

one. A third approach is to prevent the conflict by locking the object, in the case of a

non-resolvable conflictual operation. In that case, one or more users have to wait un-

til the lock is released, in order to perform their change of the objects attribute. This

is the standard solution in database systems. Further methods of intention preserva-

tion are discussed in chapter 3.

1.5.4. Workspace awareness

"The primary role of awareness information is to make one's activity visible to oth-

ers" (Dourish 1997).

Awareness mechanisms provide the opportunity for individuals to gain an under-

standing of the work of other group members and then use this information in order

to co-ordinate activities across the group. Individual actions can be related to the

activities of the group as a whole. The most important kind of awareness in collabor-

ative editing environments is the workspace awareness:

"the up-to-the minute knowledge a person holds about another's interaction with

the workspace" (Gutwin, Roseman et al. 1996).

This includes knowledge about who is in the workspace, where they are working,

what they are doing and what they intend to do next. Workspace awareness reduces

the effort needed to co-ordinate tasks and resources, helps people to move between

35

individual and shared activities, provides a context in which to interpret utterances

and allows anticipation of others' action. While most operational transformation and

locking algorithms only support maintaining the syntactic consistency of a document,

awareness mechanisms can also help maintaining semantic consistency. For example

imagine two users working on a book. User one edits chapter five while at the same

time the second user works on chapter one. Now the first user wants to refer to a sec-

tion of chapter one, that is currently being edited by user two. If user one does not

know what user two is exactly working on, he might refer to a section that is not fin-

ished at that moment in time. Thus if changes are made to that section, the reference

might be semantically incorrect. If user one knows exactly what user two is working

at, he probably would wait until user two is finished with that section before he refer-

ences it. Awareness can help in this case by providing the means for user two to

make others aware that he is still working on a certain section and that it is not fin-

ished. Usually user one would call user two and ask if he is finished with that section

or not. Or he would write an email or use an internet chat to communicate with the

other user. These kinds of awareness mechanisms disturb the workflow when editing

a document. It would be much more efficient, if each user could see at one glance

who is working on which part of a document. Also if he could make others aware of

what part he is working on and without much trouble. Thus it is important to integ-

rate awareness mechanisms into a collaborative editing system so that they

effectively support the editing process without impairing it. One approach is to aug-

ment the collaborative editing interface with new components - widgets - that show

some of the missing information about other collaborators (Baecker, Nastos et al.

1993). Examples for awareness mechanisms are as follows:

" Teleporting

" Telepointing

" Multi-user scrollbars

" What you see is what I do (WYSIWID) views

" Miniature views

" Radar views

36

"Teleporting" is a fast way of looking at an other person's part of the workspace by,

for example, showing a screenshot of the other person's view. "Telepointing" allows

to see another person's mouse movements. A multi-user scrollbar shows each per-

son's relative location in the workspace. The WYSIWID view provides full-size

detail of another person's interaction. The miniature view shows an overview of the

entire workspace and the radar view presents additional information about others'

locations. Incorporating all these different widgets into one collaborative editing sys-

tem can make it look complicated and rather confusing for a user. Thus the

awareness mechanisms chosen need to be integrated in a user friendly way and

should only provide important information.

Integration of good awareness mechanisms can contribute a lot to the usability of a

collaborative editor. This problem is very rarely addressed by contemporary collab-

orative editors.

1.6. System architectures

This section briefly discusses the different software architectures that are used in

contemporary distributed systems. Each software architecture has its assets and

drawbacks. When developing a collaborative system it is important to take the differ-

ent architecture properties into consideration.

1.6.1. Centralised architecture

The centralised architecture is the most common type of a client/server architecture.

A centralised server (e. g. database management system) maintains the data that is to

be shared between multiple clients. The clients cannot access the shared resource dir-

ectly. Access to the data objects is only possible via the server. A server can have

one or multiple server processes. If a server has only one server process, then concur-

rent access to a shared resource is not possible. Hence no inconsistency problems

occur. The disadvantage is the low system performance, because only one user can

access the data objects (for example a shared document) at a time. Systems that use

this kind of architecture provide the illusion of concurrent access by supporting only

very fine grained operations which can be executed in a very short time. A common

approach in database systems is a server with multiple server processes or threads

37

which can access the shared resource concurrently. This increases system perform-

ance dramatically but raises the problem of possible inconsistencies which needs to

he tackled by the mentioned concurrency control methods. Another disadvantage of

this architecture is that the local response time may he long.

This is due to the fact that every operation is

0 first sent to the server, then

0 the server executes it and sends a message to all clients to inform them of the

update and then

" the client receives the reply message from the server and updates the local

user interface.

'['his process is quite time consuming and the speed of completion for these steps is

highly dependent on the network latency. A high network latency (for example in the

internet) results in a had system performance. Figure 1.21 shows a centralised archi-

tecturc.

Client Client

Server

Client 1w Client

Data
Resource,

º Communication channel
Figure 1.21: Centralised architecture with single server process

1.6.2. Replicated architecture

With a replicated architecture there is no central data resource and server. Each client

site holds a replicate of the server process and the shared data resource. The server

process at each client site is responsible for maintaining the consistency of the replic-

38

ated data and thus needs to communicate with all the other sites. This architecture is

shown in Figure 1.22. A replicated architecture can provide fast response times with

optimistic execution. When a local operation is generated it is executed immediately

by the local server process. The result is instantly visible at the local client because

no network communication or validation process is necessary. The response time

therefore, is independent of the network latency. After the operation is executed loc-

ally it is propagated to all other sites that are interested in the update. When the other

server processes receive the change operation, they execute the received operation on

their local copies of data objects. A disadvantage of this approach is that inconsisten-

cies on replicated copies may occur due to concurrent update to the shared document

made by multiple server processes.

Client

Data Server
Resource

Client

ji, Server 4 Data
Resource

Aký

.&AV
Data Server 4 Server 41 P, Data Resource

Resource,

ClIiient Client

Figure 1.22: Replicated architecture

1.6.3. Hybrid architecture

The hybrid architecture is a mixture of both the centralised and the replicated archi-

tecture. With the hybrid architecture. each site holds a client and a server process.

Each site also holds a partial or complete copy ofthe shared data resource. In addi-

39

tion there is also a server site holding the shared data resource and a server process.

In general this architecture works in the following way:

There are two different types of operations with the hybrid approach; problematic

and non-problematic. Operations that do not cause inconsistency when executed con-

currently (fror example create operations) are non-problematic and operations that

may cause inconsistency (for example delete and update) are problematic operations.

When non-problematic operations are generated they are executed locally before be-

ing sent to remote sites for execution. This produces good response times. The other

type of' operations need to be executed via the server site to avoid inconsistency. The

response time for these types of operations is still dependent on the network latency.

Client

Data f Server Resource

All

A Ohl

Server

Client

Server Bala '
Resource

º AV

Data Server Resource Server Dada
Resource

Data
Resource V

Client Client

Figure 1. 23: Hybrid architecture

Besides the Netter responsiveness, the advantage is that there is always a central site

that holds the current correct version of the document. A copy of this version can be

obtained, fier example, if a new site joins the session.

40

1.7. Web-based editing

The Internet made it possible for an author to quickly and easily publish a document

and make it accessible to a large group of readers independent of where they might
be located. Today there is a trend, where this model of one publisher and many read-

ers is shifting towards a more interactive model, where multiple authors interact. An

example for this is the vision of the Semantic Web, where agents create, update and

peruse information freely. A more concrete example is the WebServices architecture

from IBM, where the notion of "author" and "reader" is replaced by peers that inter-

act across the Web. The HTTP extension WebDAV (Web Distributed Authoring and
Versioning) allows collaboration of several authors over a Web resource and Wikis

are normal HTML pages that have hyperlinks enabling any reader to edit them at any

time. They serve as places in the web, where knowledge is stored and generated by a

collaboration of users.

All of these tools support coarse-grained collaboration only. This means that differ-

ent authors can only edit different documents concurrently. It is not possible for

multiple authors to edit different parts of the same document at the same time. They

do not support fine grained collaboration, because they have no way to maintain con-

sistency within a shared resource. WebDAV for example extends the HTT-Protocol

in a way, that one author can lock a certain HTML document and make changes to it,

but no other user is allowed to change it at the same time. Awareness mechanisms
(where each author is aware of the rest of the group's activities) are not supported

either. They have no notion of other instances of the document which should reflect

remote edits. One of the most important protocols in the internet (besides TCP/IP and

UDP) is the Hypertext Transfer Protocol (HTTP). This protocol has certain proper-

ties that are important if it is used in a collaborative environment. The next section

discusses this protocol and it's properties.

1.7.1. HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distrib-

uted, collaborative, hypermedia information systems. HTTP has been in use in the

World-Wide Web since 1990 and the Internet Engineering Task Force (IETF) pro-

posed the Hypertext Transfer Protocol as an Internet standard in 1992. Without this

41

standard, the World Wide Web as we know it would not be possible. The standard al-
lows every computer that is connected to the internet to communicate with any other

computer that provides information based on this standard protocol. To access this

information a so-called Uniform Resource Identifier (URI) is used. This URI unam-
biguously identifies any resource in the Internet. The first version of HTTP, referred

to as HTTP/0.9, was a simple protocol for raw data transfer across the Internet.

HTTP/1.0 as defined by RFC 1945 (Berners-Lee, Fielding et al. 1996), improved the

protocol by allowing messages to be in the format of MIME (Multipurpose Internet

Mail Extensions) like messages, containing meta-information about the data trans-

ferred. The latest protocol version HTTP/1.1 additionally provides methods to

indicate the purpose of a request. This is important for applications that require more
functionality than simple retrieval of information, including search, front-end update

and annotation. What is important to mention is, that HTTP is a stateless protocol.
This has some effect on the applications that use this protocol to transfer data. The

HTTP protocol is a request/response protocol. A client sends a request to the server

and the server responds with a success or error code and the information body that

has been requested. After this request and response, the connection between the cli-

ent and server is disconnected and the server and client "forget" about the past

request. The protocol knows no notion of session or state. This information is import-

ant for collaborative editing systems that work with a replicated or hybrid

architecture, where each client and server needs to have information about other par-

ticipants in the collaboration. Another problem is that HTTP requires to open a new
TCP connection for every request. This causes an unnecessary overhead and network

traffic. To solve these problems, new protocols were developed, such as the Session

Control Protocol (SCP). This protocol allows a server and a client to have multiple

conversations over a single TCP connection. Another approach to allow different

collaborating sites to be informed about the collaborations participants is the experi-

mental multiplexing protocol SMUX. SMUX is a session management protocol

separating the underlying transport (HTTP) from the upper level application proto-

cols. Neither of these techniques was accepted. Other application dependent

protocols store information about the request in order to map a following request to a

running session. These protocols are not standardised and depend strongly on the

42

used technology, when developing a web application. But these proprietary protocols

are mainly used for session control today. This problem of session control therefore

needs to be addressed when developing a collaborative system that uses HTTP as a

transport protocol. The main advantages of HTTP are that it is a widely accepted

standard, has a good performance, was especially developed for hypertext documents

and can be used to transfer data even through firewalls.

1.8. Summary of contributions and thesis outline

This thesis focuses on developing a system for collaborative editing of XML docu-

ments. The following new contributions to the CSCW field are made by this work.

A framework is developed that enables synchronous collaborative editing of XML

documents, supports different awareness mechanisms and allows XML applications

to be extended with the collaborative editing feature. Specialised editors for any kind

of XML document type (e. g. SVG, X3D, DocBook) can use the framework to enable

them to work collaboratively on documents. The framework is called Collaborative

Editing Framework for XML (CEFX). Further contributions to CSCW are as fol-

lows:

"A flexible plug-in architecture allowing third party developers to extend CEFX

with new awareness widgets, concurrency control mechanisms and conflict res-

olution schemes. This allows the framework to perfectly adapt to the

requirements of the process workflow. Applications that use CEFX will profit
from new third party developments as well, without the necessity of changing

source code.

0 Support for collaborative work using heterogeneous applications using the same

XML document type. This is especially helpful, for example, in the automotive
industry where different tools are used to manipulate, analyse and check the

same data.

"A flexible consistency maintenance algorithm for XML documents supporting

optional locking of document parts. This supports adapted working schemes and
facilitates privacy support.

"A novel approach to the extension of single-user applications by making use of

43

the Document Object Model (DOM) as a common interface and Aspect-Ori-

ented Programming (AOP). The CEFX approach simplifies the integration of the

collaborative framework into an existing single-user application supporting both,

the collaborative-aware and the collaborative-transparent approach.

44

Chapter 2. Structure and conflict probability of XML

documents

To develop a system for collaborative editing of XML documents, a concurrency

control (also called synchronisation) algorithm that fits to the XML data model is re-

quired. Contemporary concurrency control algorithms for real-time collaborative

editing systems are designed for their special application area and data model. Most

of the existing concurrency control algorithms support linear data models only. In or-
der to find an optimal concurrency control algorithm for editing XML documents, it

is necessary to understand how conflicts can occur in a collaborative environment. If

multiple persons work collaboratively on a simple text document, each structural

change (e. g. deletion or insertion of a character) causes a conflict.

In case of XML documents this is different. A structural change merely leads to a

conflict, if two or more persons change the same part of the document concurrently.

The reason for the differences in the conflict probability lies in the structure of the

data. A better understanding of the coherence between the structure of a document

and the conflict probability helps to find an optimal concurrency control algorithm.
Thus in the next sections the conflict probability in case of multiple persons collabor-

atively working on an XML document is being investigated.

2.1. Analysis of XML documents

The probability of conflicts depends on many different factors. Among these is the

structure of the document itself. Analysing the structure of XML documents can lead

to a better understanding of when and why conflicts occur. In this section the struc-

ture of XML documents is analysed.

As one representative of XML documents, Scalable Vector Graphic (SVG) docu-

ments are analysed. SVG is an XML markup language for describing two-

dimensional vector graphics, both static and animated. It is an open standard created
by the World Wide Web Consortium (W3C). Specialised graphics tools are used for

drawing the graphics which are then stored in the SVG document format. Because

graphic documents are often manually created (i. e. not generated by a computer)

45

SVG is a candidate document format for collaborative editing. SVG can be used for

example in multimedia, documentation (e. g. figures), presentations (e. g. charts), ar-

chitecture (e. g. constructional drawing) and engineering (e. g. circuit diagrams);

basically anywhere where graphics are used.

Analysis of XML documents means in this case the identification of typical XML

document properties and analysing a number of XML documents towards the occur-

rence and values of these. The following XML document properties identified are

relevant for the analysis:
" Number of elements

" Number of hierarchy levels

" Number of elements per hierarchy level

" Number of child elements below an element (branches)

" Number of references between elements

Other XML document properties that are not relevant for the probability of conflicts

are properties that have no influence on the overall structure of a document. These

are for example:

" Total number of attributes

" Number of attributes per element

" Document Type Definition or XML Schema

" Comments

" Namespace definitions

The Document Type Definition or XML Schema can only indirectly influence the

conflict probability by defining a necessary coherency between nodes and thereby in-

fluencing the structure. XML documents basically consist of a number of elements

that are linked to each other as a tree graph. The figure below shows the structure of

an example SVG XML document.

46

example text
0

<svg ... >
<g>

<rect ... />
<ellipse ... />

</g>
<text ... >

<tspan ... >
example text

</tspan>
</text>

</svg>

Figure 2.1: Example SVG graphic, XML document structure and

source code

In order to analyse the structure of SVG documents, a computational technique was

developed that generated a statistic on the properties of the XML documents.

The computational technique operates on a set of XML documents by analysing the

documents with respect to the properties stated above and generating a character sep-

arated values (CSV) file containing the collected information. This data can then be

used to generate charts that visualise the analysis results.

A total number of 362 different SVG files were analysed. 209 of these SVG docu-

ments contain circuit diagrams of a car manufacturer located in Stuttgart. These

documents were chosen, because of their importance in the manufacturing process

and because they were manually collaboratively created by a large team of techni-

cians and engineers. The method by which the circuit diagrams are produced is by a

collaborative turn-taking process. This is why they are especially interesting for this

analysis. Enabling collaborative editing of the SVG circuit diagrams in real-time

would increase significantly the efficiency of the whole production process of the car

manufacturer. The other 153 SVG files are collected from the Internet and other

sources. They have no common usage or purpose. Those were chosen in order to

have a broader variety of other kinds of SVG files as well, not only circuit diagrams.

The number of SVG files scanned is too small to be statistically representative for

SVG documents in general. The intention of this analysis is not to generate a statistic

that is representative for all possible SVG or XML documents - this probably would

not be possible because of the vast number of possible formats and characteristics -

47

but rather to get an impression of the basic properties and characteristics of XML

documents by using a real world example. The results of this statistical analysis

could help in finding or optimizing a concurrency control algorithm for XML docu-

ments. The next section describes the result of this analysis.

2.2. Distribution of elements within an XML document

One important property for the probability of conflicts in XML document editing is

the overall number of elements in a document.

But of even more importance than this is where these elements are located and how

they are arranged within the document.

Therefore the analysis software, used in this analysis, generated a file containing the

following information about the analysed XML documents:

" Total number of elements

" Total number of attributes

" Maximum number of attributes per element

" Average number of attributes per element

" Number of hierarchy levels

" Number of references

" File name

" Document type

The total, the maximum and the average number of attributes is not relevant for the

probability of conflicts, because it does not influence the tree structure of the docu-

ment. Anyhow this information could be of interest in order to understand the

importance of attributes for the SVG document format. This, and because it was easy

to implement in the analysis software, are the reasons why this information is collec-

ted additionally. The collected information shows that attributes are very often used
in SVG documents. Each element in a SVG document contains between zero and

eight attributes. The average number of attributes per element is three.

The number of references between elements in a document could be relevant for the

48

probability of conflicts. When two users are working at the same time on different

parts of a document and one part is referencing the part the second user is working

on, this could lead to a conflict if for example the referenced part is deleted. This

problem has to be taken into consideration when developing a concurrency control

algorithm for XML documents. The sample documents that were analysed here,

hardly had any internal references. The number of found internal references was neg-
ligible and for this reason the aspect of internal references is not further considered in

the statistical analysis.
Here is a sample from a generated information file with the properties listed above
for each document in one row. Each property is thereby separated by a pipe ("I")

character:

551611100118I2I7I01funktionsflow sgsystemplan80. svglsvglO. dtd

261711712,7214101funktionsflow sgsystemplan35. svglno DTD

38551133341814,515101schaltplan17. svglsvglO. dtd

25517051811,72715101funktionsflow sgsystemplan50. svglno DTD

78911680181316101funktionsflow sgsystemplan84. svglsvgl0. dtd

1010I2971171315101funktionsflow sgsystemplan119. svglsvglO. dtd

30516301811,75715101funktionsflow sgsystemplan40. svglno DTD

38719251812,87814101funktionsflow sgsystemplanl45. svglsvglO. dtd

584112561812,96116101funktionsflow sgsystemplan114. svglno DTD

As can be seen in the above sample, the property values of each document can be

very different. Some documents are large (contain many elements), some are quite

small. The number of attributes can vary a lot and the number of hierarchy levels

span from one to nine in the analysed documents. The filename and document type

information is not important for the statistical analysis but is also contained in the

generated information file in order to be able to know exactly which documents were

analysed and what document type they have.

The first step of this analysis was to determine the typical size of a SVG document.

The size of a document is very important for the probability of conflicts. If a docu-

ment is relatively small the probability for a conflict is higher than with large

documents under certain conditions. Within the number of sample documents that

were analysed it was found that the size of the documents vary a lot. This means it is

quite difficult to make a general statement on the size of SVG or XML documents.

49

Figure 2.2 shows the document sizes of the sample documents. The documents were

grouped in size categories of 250 elements.

80

70

60

50

40

LL

30

20

10

0
0 2000 4000 6000 8000 10000 12000 14000 16000

Number of elements

Figure 2.2: Frequency of documents within a certain range of number of ele-

ments

As stated above not only the size of a document but also the document tree's topo-

logy is important. This information was also collected and a second set of derived

properties was generated that contains the information on the number of elements per

hierarchy level for each document. Below is a sample from the generated data. On

hierarchy level 0 there is always only one element, the root element (or root node).

Each hierarchy level in the file is separated by a pipe ("I") character:

Tr

Frequency scale of number of elements In a svg document

50

116127312061121441957174

112112111

1181152812263155

113117517214

1171814911193189

11411261819160

11311251107169

112137618

11213511168135127

Figure 2.3 shows a sample XML document tree and some of its structural properties.

Nodes per hierarchy level

1

2

3 Number of
hierarchy
levels: 5

2'

2

Total number of elements: 10
Figure 2.3: Example for analysed properties

Next to the number of nodes per hierarchy level, the number of child nodes per node

(i. e. the links between the nodes) has an influence on the conflict probability. This is-

sue is further discussed in section 2.3.1. The tree topology as well as the overall size

of an XML document can vary very much depending on the document type. As men-

tioned, in this case graphic documents (SVG) were analysed. Other document

formats such as text or multimedia documents can, for example, in average have

many more or less elements than the ones analysed here. This means, as mentioned

51

before, that the results are not to be seen as generally valid for XML documents.

Figure 2.4 shows a diagram of the average distribution of elements on the different

hierarchy levels of the scanned files. It shows the average number of elements on the

X-axis and the hierarchy levels I to 9 on the Y-axis. Most of the elements of the

scanned SVG documents can be found on hierarchy level 2 and 3. Hierarchy level 0

always contains one element, the root node.

In order to get a more general view of the structure of the sample documents, the me-

dian (instead of the average) of the number of elements is calculated per hierarchy

level. This is done to eliminate peaks of values in a small number of documents.

r

9

8

7

6

s

3

2

7

OX

b$4

3.

26.93

&, 32

1052.49

498.45

4; 37

000 10000 400oo 600 , 00 em m 1000.00
A mega number of alemens

-x
1200 00

Figure 2.4: Average distribution of element on hierarchy levels

Figure 2.5 shows the distribution of elements on the hierarchies of the sample docu-

ments by median.

52

200

180

160

140

n
120

I

a
E
as E
e

6z

i

40

20

U

-Median

Figure 2.5: Median distribution of elements on hierarchy levels

Based on the analysis results it can be assumed that a typical structure of an SVG

document looks roughly like the silhouette of a pear. This structural information is

used later in the simulation of conflicts for creating documents (see section 2.3.2).

2.3. Analysis of conflict probability

A theoretical and practical analysis of the conflict probability was conducted. This

was done in order to facilitate the development of an optimal concurrency control al-

gorithm for XML documents and to understand how conflicts occur when multiple

persons work on one XML document collaboratively in real-time. The practical ana-

lysis was conducted by simulation and is discussed in section 2.3.2. The following

section discusses the theoretical analysis and the probability of conflicts model.

2.3.1. Theoretical model for the probability of conflicts

A theoretical model can help to better understand the problems in collaborative XML

editing. Taking a look at simple and special document structures can help in the de-

velopment of a theoretical model for calculating the conflict probability. Once the

53

123456
Hierarchy levels

problem for those simple and special document structures is understood an attempt

can be made to find a general model. The next sections discuss documents with a lin-

ear data structure, documents with a single hierarchy level (plus the root level) and
documents with a binary tree structure. These document structures (at least the first

two) are the simplest structures an XML document can have. Real XML documents

have usually a much more complex structure and it is very difficult (if not im-

possible) to find a general equation in their case.

2.3.1.1. Linear data structure

Linear documents are documents with a linear data structure. For example a plain

text document is such a linear document. A text document consists of a number of

characters and white spaces in a row. Each character depends on the characters be-

fore it. Meaning that if a character is inserted somewhere in the document, all

characters following that insertion point are moved by one. Figure 2.6 depicts the

0-0-C

Figure 2.6: Structure of a linear document

structure of such a linear document. b

If two or more people work on a linear document concurrently the probability of con-
flicts is P(c) =1 in the case of structural changes such as deletion or insertion. To

explain this, the following scenario is described: For example the first person selects

any character in the document and deletes it. The characters following the deleted

character are moved. If at the same time the second person for example inserts any

character at any other position in the document, the characters following this inser-

tion position are moved as well and the two operations collide because either the

inserted character is placed at the wrong position in the text or the wrong character is

deleted. For example, the document contains the text "I am an liner document". The

first character is located at position I and the last character is located at position 22.

If the first person deletes the character at position 7 in order to change the text to "I

am a liner document", all characters following it will be moved. At the same time the

second person inserts a character at position 12 (between the characters "e" and "r")

in order to change the text to "I am an linear document". If the changes are made the

54

resulting text could be, for example: "I am a linera document". This means a conflict

occurs no matter which characters are selected and in which order the changes are

made. The conflict probability is 100% for structural operations.

2.3.1.2. Hierarchical data structure

Hierarchical documents are documents with a hierarchical data structure. An XML

document is such a hierarchical document. An XML document consists of one root

node and a number of child nodes that can have child nodes themselves. The simplest

form of a hierarchical document is a document with only one hierarchy level. Figure

2.7 depicts such a document structure.

Figure 2.7: Hierarchical document with one hierarchy level

An XML document with this simple structure could look for example like this:

<XHTML>

<HEAD/>

<BODY/>

<FOOTER/>

</XHTML>

The main difference to a linear document structure is the fact that nodes on the same

hierarchy level are not linked to each other. The nodes are linked to their parent node

(in this case the root node) and their child nodes (if any). Assuming (for this simpli-

fied model) that the order of the nodes within a hierarchy level is not relevant, a

deletion of one node or an insertion of another node into the same hierarchy level

does not affect the other nodes. Thus a conflict can only occur, if the same node or its

parent node is concurrently selected by more than one person and at the same time

changed in a way that leads to a different document state at each editing site. A con-

55

flicting situation exists, for example, if one person deletes a node while another per-

son changes an attribute of the node or inserts a child node. For example, a

concurrent insert of a child node and the modification of the same node's attributes
does not lead to a conflict.
In this simplified model it is assumed that a conflict occurs if two or more persons

select the same node or depending nodes (child or parent nodes) at the same time.

Thereby, they change the structure of the document in a conflicting way, for ex-

ample, by concurrently deleting a node and inserting a child node into it. If, for

example, two persons work on the above document concurrently, the conflict probab-
ility depends on the number of nodes below the root node. The easiest way to

determine the conflict probability here is to constrain the selection of nodes of each

person to all nodes below the root node only. In that case the probability for a con-
flict with two persons working concurrently on a hierarchical document with one
hierarchy level is

PC =n Equation 2.1

where n is the number of nodes below the root node. This is valid for conflicting op-

erations and without selecting the root node. If the root node can be selected by any

of the two users the conflict probability calculates:
(n+2(n-1))

P(co) = n2
Equation 2.2

where n is the number of nodes.

2.3.1.3. Binary tree data structure

The more complicated the document structure gets, the more complicated the equa-

tion to calculate the conflict probability for structural operations is.

A well known hierarchical structure is the binary tree. In order to find an equation for

calculating the conflict probability for this special data structure, different documents

were looked at that have a typical binary tree structure such as the examples shown
in figure 2.8:

56

ýýý6ý Figure 2.8: Binary tree structures with hierarchy levels 1 to 3

The equation to calculate the conflict probability for two users working concurrently

on documents with a binary tree data structure is:
1

(n+ al-2(a+2) P(c,) = a, _o
n2

Equation 2.3

Where n is the number of nodes in the document without the root node and a is the

hierarchy level of the document minus 1. The equation was developed by analysis of

simple example documents. It is based on the classical definition of discrete probab-

ility distributions:

"Initially the probability of an event to occur was defined as number of

cases favourable for the event, over the number of total outcomes possible

in an equiprobable sample space. 6623

By counting all possible accesses where a conflict occurs when two users access a

document and division of these by the number of all access possibilities, the conflict

probability can be calculated. This was done for a few simple documents, the results

were analysed and the above equation was developed.

As stated above, the operations that can lead to a conflict are in most cases structural

operations that change the structure of a document tree. These are for example delete

or move operations. Insert operations do not necessarily lead to a conflict, because

the insertion of a node does not influence other nodes in the tree directly. Conflicts

only occur if for example one node is deleted while at the same time a new node is

inserted beneath the deleted node. Update operations can also lead to a conflict, if for

29 Probability theory: http: //en. wikipedia. org/wiki/Probability_theory retrieved October 30,2007

57

example two users change an attribute or content of the same node to different values

and the values cannot be merged automatically. To reduce the complexity in this

model a conflict occurs if the same set or subset of nodes is selected by the two users

concurrently. This means that a conflict for example also occurs if one user moves a

node set and the second user updates a node within that node set. In reality this

would not necessarily lead to a conflict. The second user would probably be con-
fused, because the changed node suddenly appears at a different location within the

document, but the required consistency of the document technically may still be pre-

served. A question is if the semantic consistency in this case would be preserved as

well. An example is shown below for an XML document having a binary tree struc-

ture with three hierarchy levels (see figure 2.9) and two users working on it

concurrently. The document consists of 14 nodes plus the root node.

Figure 2.9: Binary tree with three hierarchy levels

The conflict probability is calculated as shown using equation 2.3:

(14+0-2(0+2)+ 1.2(1 +2)+ 2.2 (2+2) ý
P(c3) =2=0.27551 Equation 2.4

142

Thus, the calculated conflict probability is P(c3) = 27.55 %

The equation derived by theoretical analysis was experimentally evaluated. In order

to do this a simulation of two users working on documents with a binary tree struc-

ture was conducted. The simulation results then were compared to the theoretical

results. The results are discussed in section 2.3.2. The derived equation for calculat-

ing the probability of conflicts is only useful for XML documents with a binary tree

58

structure. Although this equation shows some important properties of the typical be-

haviour of the conflict probability of hierarchical documents (see section 2.3.2), an

attempt was made to find a more general equation. The next section discusses this at-

tempt.

XML data structures in general

In order to find a general equation for the probability of conflicts when editing XML

documents in a real-time collaborative editing environment, some assumptions are

made:

" All users working on the document behave in a similar way with respect to the

selection and execution of operations. Thus the probability for selecting opera-

tions and/or nodes to perform those operations on is the same for every user at

any given time.

" The probability of selecting any node (including the root node) is always the

same for every node. A continuous probability distribution (Laplace24) for the

node selection exists.

" For simplicity reasons in the first model only two users work concurrently on the

document.

" The structure of the XML document on which the users work is random and not

part of this simplified model.

In a real system the probability distribution for the selection of nodes could for ex-

ample be a Gaussian distribution (normal distribution) or a discreet distribution or

any other kind of distribution of probability.

Figure 2.10 shows an example for a normal and a discreet probability distribution.

On the X-axis are the nodes of the document from 0 to x (each node is assigned a

number between 0 and x, where x is the overall number of nodes n-1) and on the Y-

axis the -probability for selecting each node is given. The probability distribution de-

pends on the structure and type of document. For example if the document is a text

" Pierre Simon de Laplace (1812). Analytical Theory of Probability, see

http: //www. maths. tcd. ie/pub/HistMath/People/Laplace/RouseBall/RB_Laplace. html
, retrieved Octo-

ber 30,2007

59

document such as a book then perhaps the titles of the chapters change rarely while

the different paragraphs or sections are changing quite often. Thus the probability for

selecting a chapter title node is lower than the probability for selecting a paragraph

node.

The probability distribution of a real world example can be much more complex than

depicted in figure 2.10. To keep it simple in the first place a continuous probability
distribution is assumed. In reality the tree structure of the document can have an in-

fluence on the editing process, because it influences the number of nodes that are

selected in a move or delete operation. In this very simplified model it is assumed

that the structure has no influence on the selection of nodes. In the enhanced model

this influence will be taken into consideration.

probability of selection

100

Figure 2.10: Example probability distributions (normal and discreet) for

the selection of nodes

The scenario

Two users try to perform operations on the same XML document at the same time.

Each user therefore randomly selects an operation at first. An operation can be either

a move, delete, insert or an update operation. The operations have the following

characteristics:

" Move and delete operations always affect a set of nodes s >= 1. If the node on

which the operation is to be executed has child nodes, the operation will also af-

60

I%#%. A

fect them. Move and delete operations therefore may require to move or delete a

whole sub tree of an XML document

0 Insert and update operations always affect one node s=1. It is not possible for

one user to insert a node beneath more than one node in only one operation. It is

also not possible to update more than one node in a single update operation.

It is assumed that each operation type is selected with the same probability25:

_I P4 Equation 2.5

After the user has selected the operation, a node (element) in the XML document is

randomly selected. It is assumed as stated above that each node is selected with the

same probability. If a document has n nodes, the probability for selecting a node is:

P=n Equation 2.6

The third step is to execute the operation on the selected node. In order to record con-

flicting operations, each selected node is marked as "locked" before the operations

are executed. If the selected operation was move or delete, the selected node and all
its children are marked as "locked". If the selected operation was insert or update,

only the selected node is marked as "locked". A conflict occurs if one or more nodes

are marked as "locked" more than once. This happens if, for example both users pick

the same node, or if one user selects a node that is part of a sub tree in a move or de-

lete operation carried out by another user.

The model

First the probability of conflicts for the operations move and delete is contemplated.

With these operation types the number of locked nodes can vary between 1 and n-I

(all nodes except the document root node) for n being the number of nodes in the

document. It is assumed that the probability for selecting 1 to n-1 nodes is equal. For

example the probability for selecting one node or 10 nodes (by selecting a node with

9 child nodes) is equal:

P=1
s

Equation 2.7

25 The probability for selecting one of the four operation types insert, update, delete and move.

61

Where s is the number of possible selections.
As stated above the move operation in a real scenario does not necessarily lead to a

conflict. In this scenario it is treated as a conflict per definition. This makes the iden-

tification of conflicts easier.
If two users edit the same document concurrently they in reality never access a node

or a node set at exactly the same time. Accessing a node is done sequentially and this

is indispensable due to inherent properties of the used computer architecture. It is

done so quickly that the users get the impression of concurrency. For the model this

is not relevant, because the order in which the conflicting operations are executed
does not have any effect on the fact that the operations collide. It is assumed that the

first user accesses a certain number of nodes k and thereby locks them. After that the

second user accesses another number of nodes z and tries to lock them as well. A

conflict occurs if the second user accessed one or more nodes that have already been

locked by the first user. When accessing a document of size (i. e. number of nodes) n,

there are

(=1
different node sets of size z.

Equation 2.8

The number of combinations where user two does not access at least one of the same

nodes as user one is:
rn-k
t Equation 2.9

z

Thus the probability for no conflicts to arise is:

(n_k)

P= Equation 2.10 (z)

The probability of conflicts is therefore
(nk)

P= 1- Equation 2.11
(Z)

62

The next step is to take a look at the probability of conflicts for the operations insert

and update. In that case the number of nodes that the first user selects is k=1 .
The second user selects z=1 nodes. The probability for the second user selecting

the same node as the first user is P =1 /n where n is the number of nodes in the

document. In this case 2.11 reduces to:

n-k

1- z
=1 . Equation 2.12

z 1nl
n

and

n (n-1)
_1

nnn
Equation 2.13

The above equation also includes the cases where k =1 and z =n -1 and the

other way round. This occurs if one user selects an insert or update operation and the

other user selects a move or delete operation.

Enhanced model

The above equation is correct for the case of two users. If more users are working on

the document the improved equation for the probability that no conflicts occur is:

L-(n_1x),

P(x,, x2, x3,..., xi) = XL Equation 2.14

n
xL

L specifies the number of users and x, is the number of nodes each user has locked.

Constraint: the sum of all values of x, should not be greater than n.

L-1

2: x, <_n Constraint 2.1
,-1

As stated above it is assumed that the probability distribution for the number of

nodes that are marked by each user is a continuous probability distribution (Laplace).

63

In reality the structure of the document tree has a great influence on the number of

selected nodes by each user. Figure 2.11 shows an example document tree.

The probabilities of selecting a certain number of nodes in the shown tree are as fol-

lows:

P(1)=6/10
,

P(2)=O ,
P(3)=2/10 ,

P(4)=O
,

P(5)=O
,

P(6)=O

P(7)=O
,

P(8)=1/10
,

P(9)=O
,

P(10)=1/10

I

Figure 2.11: Example document tree

To take these probabilities into consideration, the equation is improved in the follow-

ing way:
L-1

n- > x;
. =1

L-1 XL Equation 2.15
P(x1, x2, x3, ..., XL)=Irl P(x,)J (

r=1 n
(XL)

For example three users access an XML document at the same time:
(n_x)t

P(x1, x2, x3)=P(x1)"P(x2)"P(x3) (
XL Equation 2.16

(XL

64

P(x,) determines the probability of selecting a certain number x, of nodes. For ex-

ample the probability of selecting three nodes in the above tree is

P(x=3)=
l

The probability function P(x) depends on the structure of the given XML document

tree. Thus the probability of conflicts when more than one users work collaboratively

on an XML document is dependent on the structure of the document and the above

equation can only be solved correctly for a given document tree.

In this model, the state at a very specific moment in time is looked at. In reality it

could happen that, for example, users one and two access the same nodes in the tree

but at different times, hence no conflict would occur. This model considers only

those moments when two or more users access the document concurrently without

virtually any delay. In a more complex model the factor time needs to be taken into

consideration. The factor time would change the number of concurrent accesses at a

specific time. On a timeline the number of concurrent accesses changes from mo-

ment to moment, depending on the number of users and on the duration it takes for

each operation to be executed. That is how long a node is locked. The factor time

could be expressed in an equation for the probability P(dt) of concurrent accesses

within a specific time span. The probability for conflicts within a specific time span
is the product of P(dt) and P(x) while P(x) is the probability of conflicts when a cer-

tain number of users x access the document of a certain size at the same time. For the

probability of concurrent accesses within a specific time span, a Poisson26 distribu-

tion could be applied.

The next step was to verify the equation by means of a simulation. One necessary

parameter to calculate the probability was the number of nodes in a document. A set

of simple documents was used to simulate conflicts and thus calculate the conflict

probability on the basis of the equation. The results of both the calculation and the

simulation were compared. The equation produced a contradictory result. In view of

the difficulty encountered in deriving this equation it was decided that further work

26 A discreet probability distribution discovered by Simeon-Denis Poisson (1781-1840). See

http: //en. wikipedia. org/wiki/Poisson_distribution , retrieved October 30,2007.

65

on this was an uneconomical use of time for the anticipated reward. The next section
discusses the conducted simulations.

2.3.2. Simulation of conflicts

Simulation is one approach to analyse dynamic systems (one special case is the

Monte-Carlo simulation which is used for static simulation). Simulation is used

(among other things) if an analysis on the real system would be too complex, too

time consuming or the real system does not exist yet. A very common way of simula-

tion today is the computer simulation. In this case the simulation is conducted by

using software. Simulation is always based on a model on which experiments are

conducted in order to gain knowledge on the system in question. In this work simula-

tion is used to analyse the probability of conflicts when multiple users concurrently

work on an XML document. First a dynamic simulation model was developed in or-

der to get a better understanding on how conflicts occur in a collaborative editing

process. Next a static simulation was conducted in order to get reproducible results

that were used to prove the equations found in the theoretical analysis. The next sec-

tions discuss the Monte-Carlo simulation method and the conducted static

simulation. The dynamic simulation is discussed in section 2.4.

2.3.2.1. Monte Carlo simulation method

The Monte Carlo simulation is a method for solving various kinds of computational

problems by using random numbers (or more often pseudo-random numbers), as op-

posed to deterministic methods. The Monte Carlo method does not require truly

random numbers to be useful. Much of the most useful techniques use deterministic,

pseudo-random sequences, making it easy to test and re-run simulations. The only

quality usually necessary to perform good simulations is for the pseudo-random se-

quence to appear "random enough" in a certain sense. That is, that they must either

be uniformly distributed or follow another distribution when a large enough number

of elements of the sequence are considered. Because of the repetition of algorithms

and the large number of calculations involved, Monte Carlo is a method suited to cal-

culation using a computer, utilizing many techniques of computer simulation 17

Wikipedia: Monte Carlo method. http: «en. wikipedia. org/wiki/Monte_Carlo_simulation, retrieved Oc-

tober 30,2007

66

(Landau and Binder 2000).

In this work the Monte Carlo simulation method is used for simulating the conflicts

occurring in a collaborative XML editing environment. It is used because it is relat-

ive easy to formulate and can be applied to nearly all problems. The basic idea is to

get a result for the probability of conflicts by repeating the random access of users on

XML documents many times and counting the number of conflicts. The found num-

ber of conflicts is then divided by the number of iterations. The result is a statistical

average number of conflicts, the statistical conflict probability for the analysed set-

ting. The setting in this case consists of certain documents and a certain number of

users concurrently working on those documents. The intention of using the Monte

Carlo method for simulation was not to find a general equation for the conflict prob-

ability when editing XML documents - this general equation is probably very hard to

find (if not impossible) - but to get a better understanding of the occurrence of con-

flicts in a certain setting, which can help in the development of a concurrency control

algorithm for XML documents.

2.3.2.2. Static simulation of conflicts

The Monte Carlo method was used to simulate different scenarios. One scenario was:

a certain number of users concurrently work on random XML documents. The num-

ber of users are 2,4,8 and 16. They work concurrently on documents of different

sizes (400-16000 elements) and hierarchy levels (4-10). Another scenario was: two

users working on XML documents with a binary tree structure. The intention of sim-

ulating the first scenario was to get a better understanding of the conflict probability

when working on general XML documents. The intention of simulating the second

scenario was to verify the derived equation on the conflict probability when two

users work concurrently on an XML document with a binary tree structure. In the

following sections the two simulation scenarios are discussed in detail.

Editing general XML documents

In order to analyse the probability of conflicts in a collaborative XML editing envir-

onment, an algorithm was developed that simulates a different number of users

editing XML documents of different sizes and structures. To get a more realistic sim-

ulation result, the XML documents used in the simulation were generated based on

67

the properties found in the document analysis (see section 2.1).

The simulation software was developed using the Java programming language and

the software development environment called Eclipse. The simulation software ba-

sically consists of two different parts. The first part is responsible for the generation

of the XML documents. The second part is responsible for the overall coordination

of the considered tasks, creating the documents, selecting the operations that are to

be performed by each "user" and collecting the simulation results. For simulation the

number of simulated users, the properties of the documents and an iteration factor are

set via a property file. The iteration factor tells how many times the editing process is

repeated in the simulation. It is a measure of the accuracy of the simulated results. In-

creasing the number of iterations leads to smaller error rates in the result. The

average error rate is the delta between the simulated results and the real results.
When the simulation is started, the software reads the following parameters:

" Size of the documents (i. e. the number of hierarchy levels)

" Number of users

" Iteration times

A document can have a minimum, a maximum or a fixed number of nodes. For this

simulation a fixed number of nodes was used. This means that the number of nodes

each document has after it is generated is fix. Once the users have executed opera-

tions on the document it is discarded and a new document is generated with that fix

number of nodes again. The generated documents had sizes from 400 to 16000 nodes
in steps of 400 nodes. That means that first documents were generated with a fixed

number of 400 nodes, followed by documents with 800 nodes up to documents with
16000 nodes. The number of hierarchy levels per document were ranging from 4 to 9

levels. These values were based on the document analysis conducted before. The

analysis showed that very rarely documents with less than 4 and more than 9 hier-

archy levels existed (within the lot of analysed documents).

For each document size (e. g. documents with 400,800 or 1200 up to 16000 nodes)

the operations were performed by first 2 then 4,8 up to 16 users. At each iteration a

document was generated of a certain size, the users performed a random operation on

68

a random node set of the generated document and after this the conflict events were

counted. The whole process was repeated 1000 times for each document size and

certain number of users. The nodes were selected randomly with a linear probability

of P=1/n where n is the number of nodes. The random number generator of the Java

2 Standard Edition was used for all random numbers (the Random class)28.

In the simulation, the root node cannot be deleted or moved, because this would lead

to a conflict in any case and it is not done in practice. A deletion of the root node

would not make sense, because the whole document would be lost. A move of the

root node would not make sense either, because there would be no place to move it

to. A node cannot be moved below itself or its children. The operations that were

performed on a node were: delete, move, insert and modify. The operations were se-
lected randomly with a linear probability of P=114

The algorithm used to generate the documents was:
First the overall number of nodes and the number of hierarchy levels was set. Then

for each hierarchy level the number of elements (nodes) were calculated. This is

done by dividing the number of nodes by the number of hierarchy levels and for each
hierarchy level multiplying the result with a weight factor based on the distribution

curve found in the document analysis (see section 2.1). The analysis showed that the

analysed XML documents had an increased number of nodes in the first 2 to 4 hier-

archy levels. The higher the hierarchy level the more the number of nodes decrease.

28 Refer to the Java 2 Standard Edition specification for more information on the underlying random

number generating algorithm: http: /6ava. sun. com, retrieved October 30,2007

69

; ANI

XIi

ý rJ

rISÜr
ýL G CD
fri QJr

ZJS

Q (I

00 J CIC
Olen)

li;
oc. { n

bet 0 u5

ýy,, m

Figure 2.12: Simulation results of the static simulation with number of

conflicts per document of a certain size for a certain number of concur-

rent users

The next step was to create the nodes. Thereafter the nodes were linked to each other

and in this way placed into the document. The linking was done by first linking each

of the nodes in the first hierarchy level to the root node. After this, each node in the

next hierarchy level was linked randomly to another node in the upper hierarchy

level. This was done until all nodes on one level were linked to one node in the upper

level. Then the nodes in the next lower level were linked to the next higher level. The

process was repeated until all nodes in the document were linked. Through this link-

ing method a random document structure was achieved. The simulation results (see

figure 2.12) demonstrate quantitatively an inverse non linear relationship between the

number of conflicts and the document size. The simulation also confirms that the

70

number of conflicts grows as the number of concurrent users increases.

The simulation software was later used to demonstrate the validity of equation 2.15

for calculation of the probability of conflicts for general XML documents (see sec-

tion 2.3.1.3.). The simulation did not use generated XML documents, but existing
XML documents instead. First the conflict probability was calculated for certain doc-

uments using equation 2.15 and afterwards the simulation was conducted using the

same XML documents. Then the results were compared. This was done for a set of

different documents and different numbers of users. The results of the simulation and

the calculation showed no correlation and it was assumed that the equation found

was not correct. The reason for this assumption was the very unlikely calculation res-

ults in those cases where the number of users was greater than two. The same method
for determining the accuracy of equation 2.15 was used for equation 2.3. Equation

2.3 is used for calculating the conflict probability when editing documents with a
binary tree structure. The following section describes the procedure.

Editing binary trees

Again the Monte Carlo simulation method was used for this simulation. A simulation

software was written that takes as input an XML document and the number of users

that concurrently work on the document. The software then randomly selects a node
from the document for each user and checks whether a conflict has occurred. For se-
lecting a node from the document a continuous probability distribution (Laplace) was

used. This means that the probability for selecting one node is the same as for select-
ing any other node in the document. This process of selecting and checking was

repeated in every iteration and the number of conflicts occurring was counted. The

simulation software was tested with simple documents for which the conflict probab-
ility was known, in order to prove the correctness of the simulation results.

As expected the process of randomly picking a node for each user and determining

the number of conflicts was more accurate for greater number of iterations. To

achieve a practically acceptable result in terms of accuracy, the number of iterations

was set to 105. In other words nodes were selected randomly 105 times from the doc-

ument for each user and checked for conflicts occurring. In this way the average

error rate is reduced. The average error rate in this case is the difference between the

71

simulated conflict probability and the real conflict probability. Tests with a greater

number of iterations (for example one million iterations) have shown no significant

reduction of the average error rate, so 100 000 iterations was deemed to be enough to

get a sufficiently accurate simulation result.

The results achieved by simulation were compared to the results calculated using

equation 2.3. The equation 2.3 to calculate the conflict probability for two users

working concurrently on documents with a binary tree data structure is discussed in

section 2.2.1.3. Figure 2.13 shows the simulation and calculation results for the first

six hierarchy levels of XML documents with a binary tree structure.

fair

ýý

Z

SQ

O

L

ýiý xi(ii

Ildi iiMi

Simullated C ? nlli. _t pul-atdnr in °a

Calculated conflict probabdat in % "
Aaenge error rate in Si

Figure 2.13: Conflict probability for XML documents with a binary

tree structure and two users working concurrently

For the calculation and the simulation, the same XML documents were used. The x-

axis shows the number of nodes of each XML document and the y-axis shows the

conflict probability in percent when editing the documents. Next to the conflict prob-

ability, the diagram shows the average error rate for each document.

As the graph shows, the larger (higher number of nodes) the document, the greater

the accuracy of the simulation result. The reason for this could be the pseudo-random

numbers that are generated by the simulation software. Pseudo-random numbers are

not perfectly distributed random numbers. That means they can slightly change the

72

Numboi of nod"

expected result depending on their quality. The profile of the pseudo-random num-

bers generated depends on the quality of the pseudo-random number generator and

the algorithms it is based on. The pseudo-random number generator used in this case

is the standard Java random number generator implemented by Sun Microsystems on

the Linux operations system. The greater the range of numbers generated by the

pseudo random number generator, the more accurate the Java number generator

seems to become. The reason for this could be that the average error of the number

generator is split up over the quantity of pseudo-random numbers that are generated.

This would explain why, for example, a document with three nodes has an average

error rate of approximately 3% and a document with 31 nodes has only an average

error rate of 0,11 %. The above theoretical model for the conflict probability is lim-

ited to XML documents with a binary tree structure and two persons collaborating. It

is very difficult to find a general model for the conflict probability of all possible

XML documents for a variable number of users. But as the above example shows the

results that can be achieved by the Monte-Carlo simulation are quite accurate, espe-

cially if the documents used are larger than 31 nodes.

2.4. Dynamic simulation of conflicts

In order to get a better impression of the behaviour of conflicts in a collaborative

XML editing environment an algorithm was developed for a dynamic editing scen-

ario. It simulated a scenario where a number of users work collaboratively on the

modification of an XML document. The users randomly insert, move, delete or up-
date nodes within the document. If a conflict occurs the nodes that are concerned are

marked in red.

Figure 2.14 shows a screen shot from the dynamic simulation software.

73

Figure 2.14: Simulation of multiple users working on an XML docu-

ment concurrently

The simulation algorithm can be broken down into four parts. The first part is re-

sponsible for the XML document generation and control. The second part is

responsible for the user initialisation and control. The third part is responsible for

displaying the document including the changes and conflicts. The fourth part is the

so called simulation controller and is responsible for creating the document, the users

and the visual components. It starts the simulation, logs the conflicts and tells the

visual component to redraw itself if changes occur. The simulation controller reads

all properties on the simulation from a property file. The property file contains the

following information:

" Number of users (minimum, maximum or fixed)

" Number of elements (minimum, maximum or fixed)

" Number of hierarchy levels (minimum, maximum or fixed)

" Network bandwidth, simulated network speed (minimum, maximum or fixed)

" Delay of operations (minimum, maximum or fixed)

" Allowed type of operations (insert, delete, move, update)

" Different sets of operations

" User delay (minimum, maximum or fixed)

" Name of file for logging

74

The property "number of users" indicates how many users work collaboratively on

the document. If the minimum and maximum values are set, a random number of

users between those two values is chosen. If the "fixed number" property is set, the

given fixed number of users are simulated. The same way it behaves with all proper-

ties where a minimum, maximum or fixed value can be given.

The properties "number of elements" and "number of hierarchy levels" indicate the

size of the document that is to be edited. The XML document is created on launch of

the simulation based on these properties and the properties found in the document

analysis. The algorithm for creating the document is the same as described in section

2.3.2.2. The "network bandwidth" property defines a factor for the simulated network

speed. The network speed has an implication for the duration of an operation. A sim-

ilar implication has the value set for the "delay of operations" property. This property

indicates how long an operation may take. The "user delay" property indicates the

time between two operations that are performed by a user on the document. All prop-

erties can all have a minimum, a maximum and a fixed value, the latter having

precedence.
The properties for "allowed type of operations" indicate which operation can be se-

lected and performed by any user on the document. By this it is, for example,

possible to only allow insert and move operations but no delete or update operations.

To get a more realistic simulation result, a set of operations can be defined. This

makes it possible to influence the frequency of certain operations more easily. Usu-

ally a user does not, for example, perform insert and delete operations at the same

frequency. In most cases a user would, for example, do many inserts before a delete

is performed. The last property indicates the name of the log file for registering oc-

curred conflicts.

When the simulation software is started, the simulation controller creates the visual

component, called TreeVisualiser and reads the properties from the property file.

The TreeVisualiser component is responsible for drawing the document tree on

the screen. Next, the simulation controller generates the XML document on the basis

of the properties by calling the createxMLDocument () method on the XMLDocu-

mentCreatorfactory class. The generation of the XML document works as

described in section 2.3.2.1. The next step is to create and initialise the users and the

75

C-onfiictLogger. The ConflictLogger component is responsible for logging any

conflicts that occur during the simulated editing process. This is done to provide a re-

cord of occurred conflicts. After this is done, the users start editing the document. If

a change is made to the document, the TreeVisualiser component is notified and

then repaints the document tree. If a conflict occurs, the nodes and the links between

them are marked in red. Figure 2.15 shows an overview of the different classes (com-

ponents) of the simulation software and their coherence29.

operation
XMLEditing Simulation

_. týec... -:)Cc

XML1lode5ct
Textldode TagNode

sxý- I. ". ý ý. r-Ert

-C 8'e, t- eeNooe

lrtE'faoe

(User IIC

r'E 81iZEb

rh, ead

User

XMLDocument Creatorfactory

XM LDoc ument

TreeVisualizer

plria18cmA

l

fControffer

a'E8II ¬w

SimulationController

C onfl i ctL ogger

UUIDGenerator

RandomCaleulator

Figure 2.15: UML Diagram on dynamic simulation software classes

2.5. Conclusions

The purpose of the Monte Carlo simulation was firstly to demonstrate the devised

equations for the simple binary tree structures were correct. Secondly to simulate

concurrent editing on more complex structures in order to gain knowledge of the

conflict probability in real concurrent editing situations. The results of section 2.3.2

' See appendix for detailed class diagrams

76

showed how the number of conflicts relate to the increasing size of documents and

the number of workers on it. The simulation conducted for a specific set of XML

documents with a binary tree data structure confirmed the calculated results for bin-

ary tree structures (figure 2.13). The simulation results for arbitrary document

structures did not confirm the equation derived for arbitrary XML document struc-

tures and was not further investigated. The dynamic simulation algorithm enabled a

good understanding of the conflicts to be obtained that occur in collaborative XML

editing sessions. The visual component (figure 2.14) showed how the XML docu-

ment grew over time and the number of conflicts decreased. By changing the

parameters it was possible to simulate many different scenarios and observe the af-

fects on the document structure and the conflict frequency. For example, increasing

the number of delete operations lead to a shrinking document with increasing con-

flicts. Decreasing the delete operations and increasing the number of insert

operations lead, as expected, to a growing document with reduced number of con-

flicts. Increasing the number of concurrent users also increased the number of

conflicts at the beginning and lead to a rapidly changing document.

The experiences made with the dynamic and the static simulation were very helpful

in the later development of the consistency maintenance algorithm for XML docu-

ments which is discussed in chapter 3. These results were used as a catalyst for the

development of a concurrency control algorithm for XML documents.

77

Chapter 3. Consistency maintenance in hierarchically

structured documents

The core of a collaborative editing framework is the consistency maintenance al-

gorithm. In order to develop an algorithm for the synchronisation of shared XML

documents, existing algorithms were analysed. The majority of the existing consist-

ency maintenance algorithms for real-time editing systems today work on a linear

data model. However, for this work an algorithm is required that supports the hier-

archical structure of XML documents. In recent years different research groups have

developed consistency maintenance algorithms for hierarchical data models. Some of

their ideas have been adopted and extended in this work in order to develop an al-

gorithm that is specialised on the synchronisation of XML documents. Thus in the

following section the most important of the latest research projects are briefly dis-

cussed, before a new consistency maintenance algorithm for XML documents is

presented.

3.1. Contemporary work

Davis, Sun et al. (2002) propose a model for an operational transformation algorithm

working on groves of the Standard Generalized Markup Language (SGML). As

XML is a subset of SGML the principles of the algorithm proposed by Davis et al.

can be applied to XML documents as well (Davis, Sun et al. 2001). The set of funda-

mental operations their model supports are insert, delete and update. The nodes in a

grove are addressed by a positional addressing scheme where the minimum of nodes

have names. The nodes are identified by their position in relation to certain nodes

chosen as landmarks. In this way it is not necessary to assign a name or unique iden-

tifier to each node within the document, which saves memory space. Their proposed

concurrency control algorithm achieves convergence of the documents by operation-

al transformation. Executed operations are kept in a local history buffer. If a remote

operation is received it is checked for causal readiness. If the operation is not caus-

ally ready, it is not executed until it becomes causally ready. An operation that is

causally ready is executed after transforming it (if necessary) by taking into consider-

78

ation the operations in the history buffer. In order to check operations for causal

readiness, each operation is time-stamped with a vector clock before transferring it to

the other sites. For intention preservation they introduce the notion of a definition

and an execution context. In a single-user editor the definition and execution context

of an operation are always identical. In a collaborative system the execution of an op-

eration at a site can have a different context than the context that defined that

operation at another site. A set of transformation functions for structural operations

are defined based on the GOTO operational transformation control algorithm (Sun

and Ellis 1998).

Galli (2000) developed a real-time collaborative editing system for VRML3° docu-

ments. The documents are replicated on each editing site by use of the Mu3D (Galli

and Luo 2000) replication protocol. Mu3D update messages are transmitted to in-

form each site of changes made by other users. For maintaining the consistency of

the shared documents a distributed memory consistency system (DMCS) is defined.

The abstract data model that is used in this system is based on VRML and Open In-

ventor3' nodes. The VRML scene graph (an ordered collection of VRML nodes) is a
forest of trees. The single nodes in a VRML tree are addressed by a path starting
from the root node. The basic operations supported by the DMCS are read and up-
date (write). All operations are executed locally first. Update operations are sent

encapsulated in a Mu3D message to the other sites. To avoid conflicts and achieve

convergence, the consistency model, called flow consistency model, locks a node

and its child nodes (sub tree) if it is selected by a user. The other sites are then noti-
fied of the selection by a control message. The flow consistency model with its

locking strategy also preserves causality and users intentions. A disadvantage of this

concurrency model is that other users may not work with a locked branch, limiting

the options for collaboration, and conflicts are prevented rather than repaired (Davis,

Sun et al. 2002).

Ionescu and Marsic (2000) propose an algorithm called dARB for concurrency con-

'° VRML - Virtual Reality Modelling Language, ISO/IEC 14772-1: 1997 Standard.

" SGI Open Inventor, object-oriented 3D programming tool kit
, http: //oss. sgi. com/projects/inventor/,

retrieved October 30,2007

79

trol in collaborative applications. The abstract data model that is used is a tree. Nodes

in the tree are assigned ids. The ids are generated by appending an index number to

the site number and the position of the node in the path. For example, for the site

with the id = 1, a paragraph can have the ids: 1.1,1.2, etc., a sentence can have ids:

1.1.1,1.1.2, etc. The basic operations supported are: create, delete and edit proper-

ties. Each operation is executed locally first which ensures good responsiveness.
After that an event is generated that contains the following information: the id of the

node, the path from root to the new node and the operation itself. If the operation is

"edit property" additionally the information about the property changes are contained
in the event. The event is then transferred (via multicast) to the other sites. The al-

gorithm uses a partial ordering based on a vector clock to check if concurrent

operations overlap and access the same node. If no overlap exists the operation is ex-

ecuted. Otherwise a so called arbitration phase is started in order to resolve the

conflict. Within this arbitration phase each site sends a special event with a computed

priority to the other sites. The site with the highest priority wins, all other conflicting

operations are discarded and the operation of the winning site is executed at all sites.
The disadvantage of the arbitration method is that the intentions of the losing sites

are lost and an overhead is caused by running a distributed arbitration algorithm

every time a conflict occurs.

Molli, Skaf-Molli et al. (2002) developed a collaborative system that allows editing

of simple HTML documents and CRC32 cards in a synchronous, asynchronous or

multi-synchronous mode. A user can switch between the different modes during the

editing process. In the asynchronous mode each operation is executed locally and

stored in local log. If the mode is switched to synchronous, the operations are

propagated to the other sites. Before the operations can be propagated the concurrent

operations need to be integrated first. In the integration phase conflicts are solved by

the underlying concurrency control algorithm. The multi-synchronous mode works

similar to version control systems such as the Concurrent Versions System (CVS)33,

72 Class-Responsibility-Collaboration cards (CRC cards) are a brainstorming tool used in the design of

object-oriented software

Concurrent Versions System, open-source version control system, http: //www. nongnu. org/cvs/, re-

trieved October 30,2007

80

C1earCase34 or Subversion". Each site maintains a local copy of the shared data. At

certain times the copies are merged and if conflicts exist, they are (if possible) re-

solved. The abstract data model that is used is a tree. The example application uses

an XML document to represent the CRC cards and the HTML document. The set of

operations supported are: creation of a node, deletion of a node, creation of an attrib-

ute, deletion of an attribute and change of an attribute. For concurrency control the

SOCT4 (Vidot, Cart et al. 2000) operational transformation algorithm is used. Opera-

tional transformation is used here for mutational operations, not for structural

operations. The consistency model applied is the same as in Sun and Chen (2002).

Ignat and Norrie (2002) propose a tree-based model algorithm called treeOPT. The

algorithm relies on operational transformation and is based on the same consistency

model as described by Davis, Sun et al. (2002). The abstract data model is a tree of

nodes. In contrast to Davis, Sun et al. a history buffer is kept for each hierarchy level

(path) in the tree instead of keeping one for the whole document. This has the ad-

vantage that operations that are executed on a certain hierarchy level do not need to

be checked against all concurrent operations that have already been executed on the

document. The new remote operation only needs to be checked against the operations

in the history buffer of the concerning hierarchy level. This saves processing time

and can lead to a better performance. The abstract data model used in their sample

text editor application has a fixed number of hierarchy levels: 0 for document level, I

for paragraph, 2 for sentence, 3 for word and 4 for character level. A node is ad-

dressed by a path assembled from vectorial positions for each hierarchy level. The

vectorial positions specify the positions for the levels corresponding to a coarser or

equal granularity than the granularity of the operation. For example, an insertion op-

eration on word level (3) has to specify the paragraph and the sentence in which the

word is located, as well as the position of the word inside the sentence (Ignat and

Norrie, 2002).

14 Rational Clear Case, software tool for revision control developed by Rational Software, http: //www-

306. ibm. com/software/awdtools/clearcase/, retrieved October 30,2007

's Subversion, open-source software for revision control, http: //subversion. tigris. org/, retrieved October

30,2007

81

3.2. A new algorithm for synchronisation of XML documents

Following a definition of Sun and Chen (2002) a cooperative editing system is said

to be consistent if it always maintains the properties of convergence, causality preser-

vation and intention preservation (see chapter 1.). The same principles are adopted
here, with the exception that operational transformation for solving the intention pre-

servation problem is not used. A new method to preserve intentions of structural

operations similar to the approach of Molli, Skaf-Molli et al. (2002) is applied. In

contrast to Molli, Skaf-Molli et al., the operational transformation for update or

mutational operations respectively is not used. As shown in chapter 2 the probability
for a concurrent modification of the same attribute of a node is relatively small when

editing an average sized or large document. Therefore it was decided to let the users

solve the problem instead of combining attribute values by operational transforma-

tion. Another reason for this is that the algorithm is intended to be as general as

possible in order to support a diversity of applications. In a professional environment

a combination of attribute values to a new, possibly invalid, value would rather be

obstructive than beneficial. However, the Collaborative Editing Framework for XML

was designed in a way so that modifications to the consistency maintenance al-

gorithm can be easily integrated in order to adapt it to the corresponding application's

requirements. In this section, first the above mentioned consistency properties are ex-

plained briefly. After that follows an explanation of how these properties are

maintained with the new consistency maintenance algorithm for XML documents

called CMAX.

Convergence

The convergence property guarantees that when the same set of operations is ex-

ecuted at all sites, all copies of the shared document are identical.

Causality

The causality preservation property requires that operations that are causally interre-

lated are executed in the right causal order at all sites. Due to Lamport (1978) this

causal relation between operations is defined as the causal ordering relation "-f".

For a definition of the causal ordering relation see chapter 1.

82

Intention Preservation

The intention preservation property requires that for any operation 0, the effects of

executing 0 at all sites are the same as the intention of 0 when it was generated, and

the effect of executing 0 does not change the effects of concurrent (independent) op-

erations.

To satisfy the causality preservation property, a time stamping scheme based on a so

called State Vector (SV) is used as described by Sun and Chen (2002). The state vec-

tor is a data structure containing a counter for the number of operations executed at

each site. Each site maintains a state vector. Local operations are executed immedi-

ately. After a local operation is executed, the local state vector is updated and a copy

of the current state vector is propagated together with the operation to the other sites.

When a remote operation arrives, its state vector is used to compute if the operation
is causally ready to be executed. In order to preserve the causality property, opera-

tions at a certain site are only executed if they are causally ready. Otherwise the

operations are queued until they become causally ready for execution. After the exe-

cution of a remote operation at a site, the local state vector is updated

correspondingly. The conditions for the causal readiness of a remote operation are
defined as follows:

Definition 1: conditions for executing remote operations. Let 0 be an operation gen-

erated at site i and timestamped by SV,, .0 is causally ready for execution at site j (j

ý i) with a state vector SV only if the following conditions are satisfied:

(1)SVo[iJ=SV1[i]+ 1 and
(2)SVo[s]<_SV[s], foralls {0,1,..., n-1} ands: t-i.

The first condition ensures that 0 must be the next operation in sequence from site i,

so no operations originated at site i have been missed by site j. The second condition

ensures that all operations originated at other sites and executed at site i before the

generation of 0 must have been executed at site j. Altogether these two conditions

ensure that all operations which causally precede 0 have been executed at site j. It

83

can be shown that if a remote operation is executed only when it satisfies the above
two conditions, then all operations will be executed in their causal orders, thus

achieving the causality preservation property of the consistency model (Sun, Yang et

al. 1996).

Each site maintains a device called a history buffer (HB) to store all executed opera-

tions. The convergence property is satisfied by ordering all operations in the history

buffer based on the total ordering relation "# " and applying an undo/do/redo

scheme. The total ordering relation is defined as follows:

Definition 2: Total Ordering Relation "* ". Given two operations OQ and Ob, gener-

ated at sites i and j and timestamped by SVoa and SVob, respectively, then OQ Ob,

if and only if (1) sum(SVoa) < sum(SVon) or (2) i <j when sum(SVoa) = sum(SVob),

where sum(SV) =
Nö SV[i].

It can be shown that the total ordering relation "=ý "is consistent with the

causal ordering relation "-b" in the sense that if Oq --> Ob, then Oa Ob

(Sun, Yang et al. 1996).

When a new remote operation O,, arrives at a site and is causally ready for execu-

tion, all operations in the history buffer are ordered with respect to the total ordering

relation. Then the undo/do/redo scheme is applied. First all operations Ob that totally

follow new operation O,, , that is O�e,, Ob, are undone. In this way the state of the

local document is restored to the state before the operations Ob were executed. In the

"do" step, the operation O,, , is executed. In the "redo" step, the operations Ob are re-
done so that their effect is integrated into the document again. This undo/do/redo

scheme is executed in the background and the intermediate document states are not
displayed to the user. The user only sees the final result of the operations execution.
It is worth noticing that this method requires that operations and their executional ef-
fect is reversible.

84

3.2.1. Intention preservation by operational transformation

Applying the above mentioned methods for maintaining the causality and conver-

gence properties can lead to a situation where the intentions of a user are lost. To

preserve the intention of operations, Sun et al. propose the transformation of causally

ready operations before their execution, to compensate the changes made to the doc-

ument state by other executed operations. To explain this, consider a concurrent

editing session where user one executes the operation Op at site i (i=0) and at the

same time user two executes the operation Ob at site j 0=1). Figure 3.1 shows the

two local copies of a shared document before and after the local execution of the op-

erations, including the sites state vector (SV[...]) and history buffer (HB[...]) values.

The intention of user one is to insert a new node containing the letter "X" left of the

node containing the letter "D ". The intention of user two is to insert a new node con-

taining the letter "Z" below the node containing the letter "D ".

In order to perform an operation on a node, it has to be identified somehow. The al-

gorithms discussed in Davis, Sun et al. (2002), Ignat and Norrie (2002), Molli, Skaf-

Molli et al. (2002), lonescu and Marsic (2000) and Galli (2000) use a positional ad-
dressing scheme based on a path or a relative id for the identification of nodes within

a document.

85

Site i

I
SVi[2,2J

Z HBi[Oi.... 041 /

B

I

D

C

J

E

G

Site j

(B)C

3

ý/I

2

F1DE

L
H G

SVj[2,2]
HBj[Oi.... 041

3

F

1
H

I

A SVi[3.2]
HBI[O1.... 04, Oaj

SVj(2,3]
HBJ (O1..., 04. Ob]

(B}C(8/)C

1234

_l

23

XDEFDEF

GHZGH
Time

Ob
Figure 3.1: An example concurrent editing scenario

In this example the node containing the letter "D" is identified by the path

p= "1,2,1 " before the execution of Oa at site i. Operations may change the relative

position of a node within a document and thereby change the path to that node. Thus,

the same node containing "D" is identified by the path p= "1,2,2 " after the execution

of Oa at site i. The operation Oo is defined as INSERT(NODE("X"), p= "1,2,1 '). The

operation Ob is defined as INSERT(NODE("Z"), p= "1,2,1,1 '). In the first parameter

of the operation a new node is created containing the given letter. The second para-

meter defines the path where to insert this new node. The operations are executed
locally first, stored in the local history buffer and then each operation, including a

copy of the local state vector SV[i; j], is propagated to the other site. The local state

vector at site i after the local execution of O, is SV, [3,2J. The local state vector at site

j after the local execution of Ob is SV, [2,3J. The history buffer of site i after the local

execution of Oo contains HB, [0,,..., O4, O, J. The history buffer of site j after the local

86

execution of Ob contains HB, [01,..., O4, Ob].

When the remote operation Ob is received at site i, it is checked for causal readiness

by comparing the state vector SVb of Ob with the local state vector SV, at site i. The

comparison

SVb[j] = SY, [j7+ 1 and SV b[iJ <_ SY, [iJ

meets the conditions for executing remote operations and thus Ob is causally ready

for execution at site i. The same is true for operation Qa when it is received at site j.

The new operation at each site is now ordered with the operations in the history buf-

fer. This is done by comparing the state vector of the remote operation to each state

vector of the operations stored in the history buffer. Following the total ordering
definition,

if sum(SVoa) = sum(SVob) and i <j then OQ * Ob.

Assuming that the operations O1 to 04 in the history buffer totally precede the opera-

tions Oa and Ob, and Oa Ob, the new values of the history buffers at both sites are

now HB[OI,..., 04, Op, Ob].

Thus, at site i no operation has to be undone because all operations already are in the

right order and Ob is executed directly. At site j, the operation Ob has to be undone,

then Oa has to be executed and Ob has to be redone again. The following figure

shows the resulting documents at each site after executing all operations.

The documents at both sites are now convergent. However, the intention of user two

was to insert the node with the value "Z" below the node with the value "D ". Now

the node "Z" is placed below the node "X" and the intention of user two is not pre-

served. The reason for this is explained next.

87

Site i
I HBi[O1.... 04, Oa, Ob]

n SVi[3,3]

\ý

1 f2 34

xDEF

Oa
`Z GH

Ob
Time

B

xiD

Oa
Z

Db

Site j
I HBj[Oi 04.0a. Ob]

A1 SVj[3,3]

C

34

EF

,G) ,H

Figure 3.2: Convergent documents with lost intentions

The operation Ob was defined as INSERT(NODE("Z'), p= "1,2,1,1 "). Due to the pos-
itional addressing scheme used here, the node containing the letter "D" is now

addressed by the path p= "1,2,2 " in contrast top= "1,2,1 "before the execution of Oa.

In order to preserve the intentions of user two, the operation Ob must be transformed

so that the impact of Op is effectively included in Ob. A number of algorithms for op-

erational transformation exist (Davis, Sun et al. (2002), Ignat and Norrie (2002),

Molli, Skaf-Molli et al. (2002), Ionescu and Marsic (2000), Galli and Luo (2000),

Galli (2000)) that try to solve this problem for hierarchical data structures. In our ex-

ample the position parameters of the operations Oa and Ob are compared and the

resolution is quite simple. When transforming the operation Ob into the form

INSERT(NODE("Z'), "1,2,2,1 '), the intentions of user two are preserved and the in-

tention preservation property is satisfied. The resulting final document is shown in

figure 3.3.

88

Site i
I HBi[01,... 04, Oa, Ob]

(71 SVi[3,3j

Site j
1 HBj[O1.... 04, Oa, Ob]
A SVj[3,3]

B) (C

Time
Ob

(x
D

)

Oa,

Ob

34

EF

1

G) (H

Figure 3.3: Satisfying the intention preservation property by opera-
tional transformation

3.2.2. Definition and execution context

The above solution to the problem is based on the fact that the two concurrent (inde-

pendent) operations were generated on the same document state at each site (for a
definition of concurrent operations see chapter 1.5.2.2). However, in an uncon-

strained cooperative editing environment, it is possible that some concurrent

operations are generated from different document states. This can lead to the problem

that a simple comparison of the positional parameter of concurrent operations is not

sufficient in order to compute the necessary path transformations. To overcome this

problem Davis, Sun et al. introduce the notion of definition and execution context

(Sun and E11is1998) and propose a set of inclusion and exclusion transformations for

a hierarchical document structure (Davis, Sun et al. 2002).

The context of a document state is defined by the sequence of operations that were

executed to bring it from the initial state to the current state. The definition context of

an operation 0 describes the document state that existed when 0 was initially created
by the user. The execution context of an operation 0 describes the state of the docu-

ment when 0 is executed on it. In a single user application the definition and the

89

execution context are always identical. In a concurrent editing application this is only

true at the site that generated 0. In order to effectively preserve the intended effect of

a user at all sites, it has to be checked if the definition context matches the execution

context at a site. If the definition context of an operation does not include all concur-

rent operations, for example due to a transmission delay at the generating site, the

operation has to be transformed at the receiving site so that the execution context of

the receiving site matches the definition context of the generating site. This is done

by applying a set of inclusion and exclusion transformations. The inclusion trans-

formations include the effect of an operation as shown in the above example. The

exclusion transformations exclude the effect of an operation. This inclusion and ex-

clusion transformation scheme can become very complex when the number of sites

and concurrent operations increase. The transformations repeatedly need to be ap-

plied to a number of operations which increases computing time and thus reduces

performance. In order to achieve intention preservation and convergence the

undo/do/redo scheme needs to be adapted to a undo/transform-do/transform-redo

scheme, so transformation is applied not only when executing a new operation, but

also when redoing operations from the history buffer.

3.2.3. Preserving intentions without OT

The CMAX algorithms preserve the users intentions without using Operational

Transformation. As stated above CMAX follows the same principles for causality

and convergence as the algorithms described by Ellis and Gibbs (1989). In contrast to

the discussed systems CMAX does not use a positional addressing scheme such as

paths or relative ids. Instead, each node within a document is assigned a universal

unique identifier (UUID). Using a UUID based addressing scheme and identifying a

node within a shared document independent of the document structure has advant-

ages over positional addressing.
Consider the same example document as shown in figure 3.1. This time, each node is

assigned a unique identifier. The node containing the letter "D" now is identified by,

for example, UUID="ABCD" (for simplicity reasons no real UUID is used here).

The node containing the letter "C" is identified by UUID= "ABC". The operation OQ

is now expressed as:

90

INSERT(NODE("X"), LOC("ABC ", REL("ABCD ", P=O))).

The operation Obis expressed as:

INSERT(NODE("Z "), LOC("ABCD ", REL(" ", P= 1))).

The first parameter again is a reference to the new node that is to be inserted. The

second parameter, LOC, identifies the location where to insert the new node. The loc-

ation is defined by two parameters:

1. The UUID of the parent node

2. The relative position REL to a child node of the given parent node.

REL is defined by the UUID of the "checkpoint" and a relative position parameter P.

The checkpoint is a selected child node of the given parent node. The relative posi-

tion parameter specifies if the new node will be inserted before or after the

checkpoint. The value P=O indicates that the new node is inserted before the check-

point. P=1 indicates that the new node is inserted after the checkpoint.

In this example the checkpoint UUID in Ob is empty because the given parent node

does not contain any child nodes. When no checkpoint UUID is given, the new node

is appended as last child to the parent node when P=1 and as the first child when

P=O. However, when a parent node has no child nodes the value of the parameter P

is not relevant as a child node can only be appended. As the intention of user two is

to insert a new node below the given parent node, appending the new node as last

child satisfies this intention. The intention of user one is to insert a new node left of

the node containing the letter "D ". The location parameter of Oa defines that the

node is inserted as child of the node with the UUID= "ABC" and before the node

with the QUID= "ABCD ".

After executing the operations locally at each site, they are again transmitted to the

other site and checked for causal readiness. Then the operations are ordered with the

operations in the history buffer at each site. The resulting history buffer values are

the same as in the above example. At site i the operations are in the right order, so Ob

is executed directly. At site j the operation Ob is undone, Oo is executed and Ob is re-

done. The resulting final document states at both sites are convergent and both users

intentions are preserved as shown in figure 3.4. By using this new method of ad-

dressing a location within a document, it is not required to transform operations in

order to satisfy the intention preservation property.

91

Assigning a unique identifier to each node, on the other hand, requires more space in

memory, especially if the shared document contains many nodes. However, the space

required for an UUID is relatively small in comparison to the space required for a
document. Today, insufficient memory is not a practical problem any more consider-
ing the technology developments in computer memory production in recent years.

Site i Site j
HBi[O1.... 04. Oa. Ob] HBj[01,.., 04, Oa, Ob]

In SVi[3,3] A SVj[3,31

B) (C

x l(D) (E) (F

Oa

10
Time

Z? (G) (H

Ob

B(C 1UUID--ABC"

x 1(D) (E) (F

Oa
Z(G) (H

Ob

Figure 3.4: Preserving intentions without operational transformation

3.2.4. Conflicting structural operations

Within a real-time collaborative editing session conflicts occur when concurrent op-

erations target the same objects and modify them in a way such that the result is not

consistent. It is important to differentiate between the two types of operational con-
flicts: structural and mutational conflicts. This section discusses how CMAX

resolves structural conflicts and maintains the properties of causality, consistency and

intention preservation in such cases.
The basic set of operations used are insert, delete and update. Update operations do

not modify the structure of a document. They are used in order to change the text

contents or the attributes of an XML node. The delete operation removes a certain

node from the document, but keeps it memorized in order to be able to undo a delete.

The insert operation - as shown above - inserts a node at a certain location within

92

the document.

The set of conflicting structural operations includes:

1. Concurrent inserts of different nodes to the same location in the document.

2. Concurrent insert and delete operations that target the same node.

3.2.4.1. Conflicting insert operations

There are two kinds of conflicting insert operations. The first kind consists of opera-

tions where the target node, that is the node where the new node will be inserted,

does not contain child nodes. The second kind are insert operations, where the target

node carries child nodes. In the first case the concurrent operations Op and Ob, for ex-

ample, are defined as:

O, = INSERT(NODE("Z'), LOC("ABCD ", REL(" ", P=1)))

Ob= INSERT(NODE("X"), LOC("ABCD", REL("", P=1)))

The location parameter is identical, but because the checkpoint UUID is empty the

new node is simply appended to the target node. In this case the conflict is resolvable

and both operations can be executed without losing the intentions of one of the users.

The result is that both new nodes are inserted in the total order of their operations.

In the second case the concurrent operations Oa and Ob, for example, are defined as:
Oa = INSER T(NODE("X'), L OC("A BC ", REL ("A BCD ", P=O)))

Ob= INSERT(NODE("Z"), LOC("ABC", REL("ABCD", P=O)))

Both operations target exactly the same location in the document. With CMAX this

conflict is resolvable, because the locations are specified relative to a checkpoint

node. Thus the problem can be solved by simply executing the operations in their

total order. The result is that both nodes are inserted and the intentions of the users

are preserved. The user who generated Oa will notice that some other user has con-

currently placed a new node between his node containing the letter "X" and the node

with the UUID= "ABCD ". He might consider moving his node to another position if

it is necessary but his intention to insert a node "before" the node with the

UUID="ABCD" is still preserved.

3.2.4.2. Conflicting insert and delete operations

In the case of concurrent insert and delete operations, the resolution is not as simple.

Consider two operations Oo and Ob defined as:

93

Oo = INSERT(NODE("X"), LOC("ABC ", REL("ABCD ", P=O)))

Ob= DELETE(NODEID("ABC"))

The operation Ob deletes the node with the UUID= "ABC" which is the same target

node as of O. When executing the operations in their total order and Oo # Ob, no

conflict exists in a syntactical sense. The new node of OQ is inserted at the specified
location and after that the node with the UUID= "ABC" is removed from the docu-

ment.
It may be argued that the user who issued Oa is puzzled by the sudden removal of the

target node. This problem cannot be easily solved and a number of conflict resolution

schemes exist for such a case. These are discussed in the section 3.2.5. However, the
Collaborative Editing Framework for XML allows the specification of conflict resol-

ution schemes that suit the applied work flow. How this is done is discussed in

chapter 5.

Due to the findings on the probability of conflicts in chapter 2, it was decided in fa-

vour of the default implementation of CMAX, to let the users solve this problem.
The concurrent operations in the above case are executed in their total order. In the

case where Ob 00, the execution would lead to a problem. When the node with
the UUID= "ABC" is deleted first, the insert operation will fail because its target

node is not part of the document any more. In CMAX this is solved by changing the

order of the concurrent operations in the history buffer at all sites. This is achieved
by modifying the operations state vector so that the total order of the concurrent op-

erations is transformed to Oa Ob. Now the operations can be executed in the same

way as above. The modification of the state vector is a new alternative to operational
transformation which has been given the title 'state vector swapping' (SVS). The op-

eration itself is not changed, only the state vector of the operation is transformed. As

SVS is applied at all sites on the same operations and in the same manner it can be

shown that the resulting shared document at all sites are consistent and the syntactic-

al intentions are preserved. The SVS algorithm is discussed in the next chapter.
The same problem as discussed above occurs when a delete operation removes a

node from the document that contains the target node of the insert operation as a

child in the sub tree. Conflicts such as these are characteristic for hierarchically

structured data models such as in XML. In a linear data structure (for example plain

94

text) these problems do not occur.

Another conflict situation arises in the following case of concurrent insert and delete

operations:
OQ = INSERT(NODE("X'), LOC("ABC", REL("ABCD ", P=O)))

Ob = DELETE(NODEID("ABCD'))

In this case the delete operation removes the checkpoint node of the insert operation.

If the delete operation is executed before the insert operation after ordering the oper-

ations, the insert operation will fail because the checkpoint node is no longer a child

node of the node with the QUID= "ABCD ". This problem is solved in the same way

as above by state vector swapping.

3.2.4.3. Conflicting delete operations

From an users perspective, the concurrent delete of the same target node is not a con-
flict. However, from the technical perspective it is. Consider two concurrent delete

operations Oa and Ob:

Oa = DELETE(NODEID("ABCD "))

Ob = DELETE(NODEID("ABCD "))

A problem occurs here when executing the operations in their total order. After the

first of the two operations is executed the second execution will fail, because the tar-

get node has already been removed from the document. The solution here is to

discard one of the concurrent delete operations. For example if Oa Ob, Ob is

marked as discarded and the execution will have no effect. Discarding an operation
does not change the operation itself, or its state vector. The operation Ob is treated

like any other operation, the only difference is that the execution will not have an ef-

fect.

A similar problem occurs if one of the deleted nodes is part of a sub tree of the other
deleted node. In this case the same method is applied as in the case of concurrent in-

sert and delete operations. Consider the operations:

OQ = DELETE(NODEID("ABCD "))

Ob = DELETE(NODEID("ABC'))

95

The node with the UUID= "ABCD" is a child of the node with the UUID= "ABC".

In the case of OQ Ob the operations do not conflict and can be executed as is. In

the case of Ob OQ the state vector swapping method is applied before executing

the operations.

3.2.5. Conflicting mutational operations

Besides the basic insert and delete operations, CMAX supports update operations

which are used for changing the properties of a node. They are called mutational op-

erations, because they mutate a node, in contrast to structural operations which do

not change the node but only its location within the document.

The CMAX algorithm is capable of satisfying the properties of convergence, causal-
ity preservation and intention preservation on structural operations. However,

preserving the intentions of mutational operations can not be attained in all cases.

The following example illustrates this:

Consider two concurrent update operations OQ and Ob modifying the same attribute A

of the same node N to different values. Let N be a circle element node in an SVG

document and A be the radius attribute r with a value of 0.5 (r=0.5). Oo modifies A to

the new value 0.9. Ob modifies A to the new value 0.4. Assuming that the radius at-

tribute can only have one valid value at a time, these contrary user intentions lead to

a conflict when the corresponding remote operations are received at each site. In or-

der to resolve the conflict, different conflict resolution schemes (CRS) can be

applied. Common conflict resolution schemes are:

0 No operation. Both operations are discarded and the changes have no effect.

The result is a radius of r=0.5 at both sites. All user's intentions are lost.

" Solve by priority. The operation with the higher priority is executed. Different

methods exist to define the priority. For example, each user is given a priority

when the collaboration begins or the priority is selected by arbitration as in

dARB (Ionescu and Marsic 2000). The result is a convergent document, the in-

tention of one of the users is preserved and the other's are lost.

0 Multi-Versioning. A new version of the document (or of the node) is created for

each conflicting operation (Sun and Chen 2002). This has the drawback that at

96

the end someone has to decide which version is the correct one. In the case of

many versions this can become quite complicated. All user's intentions are pre-

served until a decision on the correct version is made.

S Merging. The result of the two operations are merged to a new value. For ex-

ample the new value could be the average of both conflicting operations. In this

case the new value at both sites would be r=0.65. All user's intentions are integ-

rated but depending on the application, this may or may not make sense. In the

worst case the result is semantically incorrect and all user's intentions are lost.

" Solve by semantic context. One of the values is chosen depending on the se-

mantic context of the application. This could be, for example, the maximum or

the minimum value or a completely new calculated value. Important is that the

new attribute value makes most sense semantically. Molli, Skaf-Molli et al.
(2002) transform the conflicting operations so that the maximum value is always

chosen. This could make sense in some applications but is never a general solu-

tion to the problem.
User Notification. The users are notified of the conflict and have to decide

which value is the correct one. This way of manual conflict solution can be com-
bined with other conflict resolution schemes. All user's intentions are preserved

until a decision is made.

CMAX resolves the problem in the following way. Based on the result of the conflict

probability studies in chapter 2, it was decided to let the users solve this problem.
With CMAX the concurrent update operations are executed in their total order. Thus

the resulting value of the radius attribute for the case of

Oa Ob would be r=0.4. For the case of Ob # Oa the result would be r=0.9.

One of the users intentions is lost and he or she might be surprised, that the value is

different than the one he or she changed it to. The user would probably try to change
it again. In such a case it is very important that the collaborating users are aware of

what the other users are currently working on. This can be achieved by suppörting

awareness mechanisms which is done so by CEFX and is discussed in chapter 5.

97

If a user modifies a node and concurrently another user deletes the same node or one

of its parents in the document tree, the following happens. CMAX handles this prob-
lem the same way as it does with concurrent insert and delete operations.
If Ob * Oo where OQ is the delete operation and Ob is the update operation, the oper-

ations are executed in their total order. In the case of Oa # Ob, the total order of the

conflicting operations is reversed to Ob # OQ and they are executed.

3.2.6. Locking of nodes for conflict prevention

Besides the methods of conflict resolution provided by CMAX, CEFX additionally

provides an optional locking scheme. Locking is a simple method to prevent conflicts

such as those described above. The CEFX locking scheme is similar to the one de-

scribed by Galli (2000). In contrast to Galli the locking is optional and the locking

granularity is more flexible. The user has the opportunity to select a whole set of

nodes and sub-trees and mark them as locked, instead of only locking one selected

node and its child nodes (sub-tree). The ability to lock a user-defined part of a docu-

ment is a desired feature in a collaborative editing application. For example in the

case where a various number of users work on one large document, there are times

when users want to collaborate freely and other times when they wish to work on

their part of the document alone, without being disturbed by another user. This flex-

ibility in the locking granularity is a new feature, which allows locking of parts of a
document by one user, while other parts are open for collaborative real-time editing.
The locking mechanism is not part of the CMAX consistency maintenance al-

gorithm. Locking is transparently applied by CEFX and independent of the used

consistency maintenance algorithm. As CEFX allows integration of different consist-

ency maintenance algorithms, this has the advantage that these algorithms do not

require additional effort in supporting lock and unlock operations. How optional
locking is achieved in CEFX is discussed in chapter 5.

3.2.7. Informal specification of the CMAX algorithm

The CMAX algorithm was designed for the XML data model as specified by the

World Wide Web Consortium (W3C). Recommendation for the Extensible Markup

Language (XML) 1.0 (Fourth Edition). For the manipulation of XML this works im-

98

plementation of CMAX makes use of the Document Object Model (DOM) Level 3

interface.

In the following we present the CMAX algorithm for maintaining consistency over

XML documents. This algorithm was applied in the default implementation of CE-

FX.

The following notations will be used in the description of the CMAX algorithm:

" Or represents a new remote operation arriving at a site

" O, represents a new local operation issued at a site

" HB, represents the history buffer containing executed operations at a site

" 0, represents the ph executed operation at a site stored in the HB3

" COV represents the concurrent operations vector containing all operations that

are identified as concurrent

" CRHMrepresents a map of conflict resolution hints for conflicting operations

" SV, represents a sites state vector

" SV, represents an operations state vector

" OQs represents the FIFO queue of incoming remote operations at a site

0 01 0 Or means that 0, is in conflict with O,.

Algorithm 1.1. CMAX EXECUTE LOCAL OPERATION (O1)

1. Execute 0,

2. Update SV33.

Assign value of SV3 to SVo

4. Add 01 to HB,

5. Propagate 0, to all other sites

After executing a local operation, the local state vector is updated by incrementing

the operations count for the corresponding site. Then the new value of the local state

vector is assigned to the state vector of the operation and the local operation is added

to the history buffer, before it is propagated to the other sites.

99

Algorithm 1.2. EXECUTE AND UPDATE(O)

1. Execute 0

2. Update SV3
3. Add 0 to HB,

When executing an operation, the local state vector is updated and the operation is

added to the history buffer.

Algorithm 1.3. UNDO(O)

1. Undo 0

2. Decrement SV,

3. Remove 0 from HB3

When undoing an operation, the state vector is decremented and the operation is re-

moved from the HB5.

Algorithm 1.4. CMAX EXECUTE REMOTE OPERATION (O)

1. Check if Or is causally ready to execute
2. If Or is causally ready

1. If HB, =[]
1. EXECUTE AND UPDATE(O,)

2. Else if HB , =[0j, ..., 0�_,], where n represents the number of all executed

operations at the site
1. Search for the position p of the last operation 0, Or in HB5

2. For all 0, in HBs from ip to p=n-1 add O, to COV

3. Add O, to CO V
4. Order all operations in COV after total order
5. For O, in HB, fromn-I top UNDO(O,)

6. Check all 0, in COV for a conflict with O,.

1. If 0,0 0, find a conflict resolution hint (CRH) for the conflict

and add CRH to CRHM

7. For all O, 0 0, in COV apply the corresponding CRM from CRHMto

resolve the conflict

100

8. Order all operations in COV after total order
9. For all operations in COV EXECUTE AND UPDATE(D)

3. Else, add O, to OQ5

First the remote operation is checked if it is causally ready for execution. This is

done by comparing the state vector of the operation to the local state vector as de-

scribed in Definition 1: conditions for executing remote operations. If the operation
is not causally ready, this means that another operation that is causally preceding has

not been received yet and the operations execution has to be delayed until the miss-
ing operation is executed. Incoming remote operations that are not causally ready are

therefore stored in a queue (OQ,). The operations in the queue are then processed
later. When a causally ready operation is the first operation to be executed at a site,

the history buffer is still empty and the operation can be executed directly as de-

scribed in Algorithm 1.2. When the history buffer HB3 contains operations it has to

be checked to establish if the new operation (0,) is conflicting with any of the con-

current operations in HB3. This is done by applying the following procedure:
All operations that are concurrent (independent) with the new operation are selected

and stored in the concurrent operations vector (COV). The new operation is added to

the COV and then the operations in the COV are ordered, so that the new operation is

in the correct total order position within the other operations in the COV. After that

all operations in HB, which are concurrent with 0, are undone (see undo/do/redo

scheme). The next step is to check for conflicts of O, with concurrent operations.
If a conflict is found, a conflict resolution hint (CRH) is selected for the type of con-
flict and stored in the map for conflict resolution hints (CRHM). The CRHM maps an

operation in COV to its corresponding CRH. The CRH is a data structure that identi-

fies a certain action that is to be undertaken in order to solve a certain conflict. The

types of conflicting operations and their conflict resolutions were discussed in the

sections 3.2.4 and 3.2.5. The CRHs used in this works implementation are discussed

further in the next chapter. After applying the CRHs for all conflicting operations in

COV, the operations in COV are ordered again, so that state vector swapping changes
have an effect on the total order of operations. In a last step all operations in COV are

executed, the local state vector is updated and the operations are added to the Hß,.

101

By executing the operations in the COV, the new operation is executed and all un-
done operations are redone.

The next chapter discusses the software implementation of operations in CMAX.

3.2.8. Conclusions

The work described in this thesis is the first documented attempt of the successful

use of universally unique identifiers (UUIDs) in a consistency maintenance al-

gorithm to address nodes within an XML document and to use a new state vector

swapping scheme (SVS) in order to preserve intentions. Using UUIDs has advant-

ages over positional addressing schemes. Intentions can be preserved without the

need to transform operations, reducing complexity and calculation time.

In the case of resolvable conflicts the SVS scheme was successfully used to solve the

conflicts instead of applying operational transformation (OT), which is already used
in other contemporary consistency maintenance algorithms. The consistency main-

tenance algorithm (CMAX) supports the synchronisation of any XML document

type. As XML document types exist for many application areas, the CMAX al-

gorithm can be generally used for the synchronisation of, for example, 2D and 3D

graphic documents as well as text documents or spreadsheets.

102

Chapter 4. Implementation of the algorithm in software

For the implementation of the CMAX algorithm in software, the Java programming

language was chosen. Java is a widely used, platform independent36 and object-ori-

ented language. The standard Java Runtime provides libraries for XML parsing and

processing37, reducing implementation effort. These were the main reasons for choos-

ing Java for the implementation of CMAX. This chapter describes the main compon-

ents of the software, their roles and tasks within CEFX and how the testing of the

software components was conducted. The source code that is discussed in this

chapter and attached to this thesis, represents the formal specification of the CMAX

algorithm.

4.1. Software components

The implementation of CMAX is split up into three components. The main part of

the algorithm is placed within the concurrency controller (CC) component. The con-

currency controller inquires the conflict resolution provider (CRP) in the case of a

conflict for a conflict resolution hint (CRH) as described in chapter 3. The manipula-

tion of an XML document is conducted by the Operation components. Operation

objects are transmitted between the collaborating sites and hold all necessary inform-

ation on how to execute an operation that has been issued by a user. The following

sections discuss these three components.

4.1.1. Concurrency Controller

The concurrency controller implementation is split up into a number of classes and

interfaces. The ConcurrencyController interface defines the basic methods of the

concurrency controller. An abstract base class, the AbstractConcurrencycontrol-

lerImpl (ACCI) class, implements most of the interface methods and leaves only a

few methods to be implemented for the subclasses (in this case the orderingCon-

currencyControllerImpl class). The ACCI class has been developed in order to

- Java Virtual Machine implementations exist for many operating systems such as Windows, Mac OS,

Linux and Unix

37 The Java 2 Standard Edition (J2SE) contains the Apache Xerces XML parser

103

simplify the development of third party concurrency controller components. The or-

deringConcurrencyControllerlmpl is the default CC implementation used in

CEFX. The AbstractConcurrencyControllerlmpl class also implements the

methods defined by the ExecutionContext interface. This interface is necessary

when executing an operation, which is explained later.

-161804.

Execuno., Conte, t

" ea. sa4coe. `_. irr _a i

- getNamel. ' Sr ng

geflYoceFOnoi St-g ,. --_
- getNo, eßomOeleceo , ooe'Pac Cee, e
" ge'4ooeb, Noce
- refreshyooeMac, .ýa

-e eswfeL or of O e, -ar. , Oe a_...

- ger.. a'or, E ffea. _-, _... - ceýerCr
- 4e"'ýooeFOMi Stnnq.

ý
",

cOe

- ge'r. coeM1eapi: Hasr. l, ýac

gerttate Vectoq State Vet o

- otC. dOfNoee(Shmg ý, y cooýear

- =er ýcea
PCýc...

ectroor . ce. af. orE-e: brcý ... _

Rýqýabfe
G: aeM

., r tefa oe. Abs6acfConcunencyCorrOVf(Mmp!

Co. M, ctResolubonPrvvlder
ý, sta"vBuffe" Sta =-J. e etýcr=- SUWWVector

=_e'8t, cr ý ie Je Cie JE< ý: e"str:

org w3c Own
Document Order gConcurrencyC ontroIIerfmpl --

CefsýI ýý

Figure 4.1: Concurrency Controller class diagram

As shown in Figure 4.1, the ACCI class has a history buffer (nistoryBuffer prop-

erty of type stack) containing operations (operation objects). It has an operation

queue (property opera tionQueue), representing a queue of operations that are ready

to be executed. The ACCI holds a map of nodes (nodeMap property of type xashMap)

mapping all nodes of the current document to their UUID (type string). The node

map facilitates to find a node within the document very quickly on basis of its UUID.

The ACCI additionally has a map of deleted nodes (deletedNodeMap property) that

is used to store all nodes that were deleted from a document. The ACCI aggregates a

state vector (statevector). The statevector class implements the interfaces

cionable and Serializable which is required in order to be able to send a copy of

a statevector over the network. The ACCI references objects of the type Con-

flictResolutionProvider and org. w3c. dom. Document. The

104

org. w3c. dom. Document interface is the DOM interface for the manipulation of the

current XML document.

4.1.1.1. ConcurrencyController interface methods

The Concurrencycontrolier interface declares the following methods:

" boolean executeLocalOperation(Operation operation);

" boolean executeRemoteOperation(Operation operation);

" StateVector getStateVector();

" Collection<Operation> getHistoryBuffer(;

" void setDocument(Document localDoc);

" void setConflictResolutionProvider(ConflictResolutionProvider

crp);

" void setOperationExecutor(OperationExecutor impl);

The methods executeLocalOperation (Operation operation) and ex-

ecuteRemote0peration(Operation operation) are called by the

CEFXController if either the user issued a local operation, or a new remote opera-

tion was received over the network from another site. The method

getStateVector () is used for retrieving the current local state vector and setting the

value of the state vector of a new operation to the current state vector value. The

method getHistoryBuffer () is used for clearing the history buffer after loading a

document and initialising a new editing session. The method setDocument (Docu-

ment localDoc) provides the concurrency controller with a reference to the new

document which is to be taken under concurrency control. After setting the document

reference, the concurrency controller analyses the document and starts to index every

node by adding each node in the document to the controller's map of nodes (no-

deMap). The method

setConflictResolutionProvider(ConflictResolutionProvider crp) is called

by the CEFXController in order to provide the ConcurrencyController with a ref-

erence to the ConflictResolutionProvider.

The method setOperationExecuter(operationExecutor impl) provides the

105

ConcurrencyController with a reference to the OperationExecutor object. This

method is called by the CEFxController when initialising the ConcurrencyCon-

troller. The operationExecutor is an interface to the client, in this case

represented by the CEccontroller, providing information on the client's name and

identifier. It also allows notification of the client if an issued operation is not suppor-

ted. It depends on the implementation of the ConcurrecyController if an operation

is supported or not. In this case the ConcurrencyController, for example, does not

support an operation that would delete the root node of a document. Deleting the root

node of a document would lead to an invalid document and all subsequent operations

would become invalid. The OperationExecutor interface also provides a method

that allows notification of the client on real conflicts. A real conflict is one that can

not be solved automatically by the concurrencyController implementation. The

client (CEFxController) can then use this information to notify the user of the situ-

ation and, for example, let the user solve the problem.

4.1.1.2. ExecutionContext interface methods

The context of execution is the local document state at each editing site. The Execu-

tioncontext interface declares methods that provide information on the current

context of execution and allows modification of it. Operations that are executed use

those methods to achieve the required effect and thus change the context. The meth-

ods declared by Executioncontext are as follows:

" Node getNodeForld(String uuid);

" String getNodeId(Node node);

" boolean isChildOfNode(String childNode, String parentNode);

" boolean existsNode(String nodeUuid);

" Document getLocalDoc();

" void refreshNodeMap(;

" Node getNodeFromDeletedNodeMap(Operation op);

" Node addNodeToDeletedNodeMap(Operation op, Node node);

The method getNodeForld(String uuid) retrieves the node with the given UUID

from the document. When an operation is transmitted over the network the target

106

node of an operation is identified by the UUID. This method is used to get a refer-

ence to the node object within the local document. The method getNodeid(Node

node) retrieves the UUID of a given node in order to, for example, compare it with

an UUID of another node. The method isChildOfNode (String childNode,

String parentNode) is called by the ConflictResolutionProvider. It is used to

find out, if a node with the given UUID in the childNode argument is part of a sub

tree starting from the node with the UUID in the parentNode argument. This is ne-

cessary in order to know if a deletion of a node might interfere with an insertion or

an update on another node which is part of the sub tree.

In order to find out if a node with a certain UUID still exists in the local context, the

method existsNode (String nodeUuid) is used. The method getLocalDoc ()

provides the caller with a reference to the current local document object. Operations

use this method to modify the document directly.

The ExecutionContext (represented by the concurrency controller implementa-

tion) owns a map of all nodes in the document (nodeMap), as mentioned before.

After an operation is executed, the operation calls the method refreshNodeMap () so

that all changes to the document are reflected in the map of nodes. That is for ex-

ample, if a new node has been added to the document, the node map is updated and

the new node is added to the nodeMap. A second map of nodes is used to store all

nodes that were deleted from the document (deietedNodesMap). This is done in or-

der to be able to undo a delete operation easily.

The method getNodeFromDeletedNodeMap (Operation op) is used to retrieve a

node from the map of deleted nodes. The method addNodeToDeletedNodeMap (Op-

eration op, Node node) is used to store a deleted node in the deletedNodesMap

of the concurrency controller implementation.

4.1.1.3. The AbstractConcurrencyControllerlmp1 class

The concurrency controller used in this work was implemented in two steps. In the
first step the abstract base class AbstractConcurrencycontrollerImpl (as shown
in figure 4.1) was implemented. The second step was to implement the Ordering-

ConcurrencyControllerlmpl class. This section explains the functionality that is

107

implemented in the AbstractConcurrencyControllerlmpl class.

The concurrency controller implementation is instantiated by the CEFxcontroller.

How this is done is explained in chapter 6. After instantiating the concurrency con-

troller, it is initialised. The abstract class AbstractConcurrencyControllerImpl

therefore provides the init (OperationExecutor client) method. When this

method is called, the following steps are executed:

0 Store the reference to the client (the CEFxcontroller) in a field of the type op-
erationExecutor

" Create a new empty history buffer

" Create a new empty map of nodes (nodeMap)

" Create a new empty map of deleted nodes (deietedNodesMap)

0 Create a new empty state vector

" Create a new empty operation queue

0 Start the concurrency controller thread

The Ab stractconcurrencyControllerimp class is implemented as a thread run-

ning in parallel to the editing application. The thread runs in an endless loop and

checks after a certain delay time (in this case every 100 milliseconds) if an operation

in the operation queue exists, that is ready for execution. The activity diagram in fig-

ure 4.2 shows the flow of activities in the run () method of the

AbstractConcurrencyControllerImpl class.

108

'cna^er Or-Or'tr: IIQ' th'e 6tD'tfio Eno th'ea

endless loop

. cc a "E^ cc t--, lie- is -Emir:

poll

operation
wait for a while

queue for ; 31. ELE is e- ty:

o ration

Ce atlCr /ýLr. ý:

execute
remote

'Er=tE =CE'BtICr
operation

: ICCeI ce atlc

execute
local

0 anon

Figure 4.2: ConcurrencyController thread activities

Each operation found in the operations queue is checked if it is a local or a remote

operation. This is done by comparing the operation's and the client's (the opera-

tionExecutor's) id. If the ids are identical the operation is local, otherwise it is a

remote operation. Remote operations are executed by calling the execut eRernot eOp-

eration (operation op) method. In the case of a local operation, it is executed by

calling the executeLocalOperation (Operation op) method.

The AbstractConcurrencyControllerImpl class implements all methods of the

ConcurrencyController interface except the method setoperationExecutor (Op-

erationExecutor imps). This method is implemented by its subclass, the

OrderingConcurrencyControll erImp1 class. All methods of the ExecutionCon-

text interface are implemented completely by the

AbstractConcurrencyControllerlmplclass.

AbstractConcurrencyControllerlmpl declares two abstract methods that require

109

implementation by a subclass. These are:

" boolean prepareExecution(Operation o);

" int checkConflict(Operation newOperation, Operation concurrent-

Operation);

These two methods are implemented by the OrderingConcurrencyControllerImpl

class. They contain the main concurrency control logic of the CMAX algorithm.

In the following sections the methods for executing local and remote operations are

discussed.

Executing a local operation

The method executeLocalOperation (operation operation) is called by the cli-

ent, represented by the CEFXController, when the user issues a new operation. The

sequence diagram in figure 4.3 shows the scenario of a successful execution of a loc-

al operation.

stl E><ECUtelocalOpkraOOn

t! "ts tv.
Q

.ý rtet. » . irte"f. Oex . irtf'f*ýB: Acstw or'c - r. _: rt"r IIe'I'ncl . n
-A

OEF'2^DI. I OBCtE'

l

r. EF ý"^rt": IIE' : rcý"irryý: rt': Ile' CE'B1iLr IVEtn^'Y^^nt. C llE'

.: o k "c Cfrpýnb u'e^: 'VOt)e crib rr_a4

! mal G. If. ý. Ct'BL : ^'.. ýCf'11ý: ^

l of Cý.:. L: ta ItC. ')tr: r : ýCYB: i: ^

n ýcrsr,: ^_�c c: "teo c ýcratic^

f tE C..: k 3Q E". k^.::: I: ^.. ^: fý:

cý8t¢Et8t¢J¢ctc'' ci, E^tV3 tr1

lftSt@te Vf tZ-' $tat! 'J. CS: '

BotlTc-, Stc", B.. Me".

C'_L @a BtE^JCE'B[i: r : ýCYBti: ^

Figure 4.3: Execution of a local operation scenario

In this scenario the user creates, for example, a new node in the document. This leads

a medna. . irted*ýrtn AtrtwGCcr'c - roj_ortclle"I'nel artet.. . irte'f. oex

OEF'2"OI. I o c1E' : EF ^^rt' IIE' cra'ýer Gy"C: "t': II! ' CE'Btiýr IVEtn^'Y^^ntýCIIE'

110

to a call of the Node_appendChild (Node parent, Node child) method of the CE-

FXDOMAdapter. The CEFXDOMAdapter creates a new operation and calls the

executeOperation(Operation o) of the CEFXController38. The CEFXControl-

1er then calls executeLocalOperation(Operation 0) on the

ConcurrencyController. In the executeLocalOperation(Operation o) method

the following steps are executed:

" Check if the operation is supported.

" Call execute (ExecutionContext context) on the operation.

" Update the local state vector.

" Set the state vector of the operation by calling its

setStateVector (StateVector sv) method and provide it with a copy of the

current local state vector.

" Add the operation to the history buffer.

" Propagate the operation to the other sites by calling the

propagateOperation (Operation o) method of the network controller39.

Executing a remote operation

Figure 4.4 shows a scenario with the successful execution of a remote operation. Re-

mote operations are received by the network controller of CEFX. After the network

controller received an operation from another site, it calls the executeRemoteopera-

tion(Operation o) of the CEFXController. The CEFXController then calls the

executeRemoteOperat ion (Operation o) of the ConcurrencyController.

'a The CEFXDOMAdapter and the CEFXController are discussed in chapters 5 and 6.

39 The NetworkController is discussed in chapter 5 and 6

111

. mte4s ola . 't! "fsoEa =. cst"e aý: rp"^Er pfCcrt"^. II! 'I"ýCI J'oe', Ccýa, ^e^ , mac^rcllE'IrCI

Iretac'a'[crt"cf It, -EP iCcrt"ýIle"

E. ea: eGe"-cceýce"e ucr :: ýcß"wcr

Eý. EIX. lER ET CtEýCF'a J[r i[E'etl[^

clear= isýaýsallýaEeaý ý[t'au: ^

coclEar= c Eca"EE Ea tic^ c : trau.

Figure 4.4: Scenario of executing a remote operation

The Concurrencycontroller is, as mentioned before, implemented by the Ab-

stractConcurrecyControllerImpl and the

OrderingConcurrencyControllerImpl classes. In the sequence diagram in figure

4.4 both classes are depicted to show which method is implemented by which class.

In reality only an object of the OrderingConcurrencyControllerlmpl type is in-

stantiated. The ConcurrencyController checks if the operation is causally ready

for execution. If the operation is causally ready the method prepareExecution (op-

eration o) of ConcurrencyController is called.

The execution steps within the executeRemoteOperation(Operation o) method

of the Abstractconcurrencycontrollerimpl are shown in the activity diagram in

figure 4.5. First the operation is checked if it is causally ready by calling the method

isCausallyReady(Operation o) (also see figure 4.4). If it is not causally ready,

the operation is appended to the operation queue for later execution. If it is causally

ready, the prepareExecution (Operation o) method, which is implemented by the

OrderingConcurrencyControllerImpl class, is called. If the operations execution

failed, the operation is appended to the operation queue and handled at a later time in

the method run () of the AbstractConcurrencyControllerlmpl thread.

112

check if
th*

call t:

operation

Is

causally

:: ce ti: r is ca.. 5811y %soy:

------------ ---- ------------
OrderingConcurrenc ntrollerlmpl

prepare
operation

for

execution
and try to

: cr*, ati. -r is -: t caýsall; qiiao;

e it

------'

I`

: exe:. ti: r :f-, wati: r fJuI ,

: execun: - sux-ssU*.

'Etýý^

Figure 4.5: Executing a remote operation activity diagram

The activities shown in figure 4.5 correspond to the steps 1. and 3. of the CMAX al-

gorithm specification (see algorithm 1.4. in chapter 3.2.7). The "prepare operation

for execution and try to execute it" activity - which is implemented by the Order-

ingConcurrencyControllerlmpl class - corresponds to step 2. of algorithm 1.4.

4.1.1.4. The OrderingConcurrencyControllerlmpl class

The methods prepareExecution(Operation o) and i i(-t (Op r-, t i<ýrl

o) are implemented by the OrderingConcurrencyControllerImpl (OCCI) class.

Additionally the OCCI implements the setOperationExecutor(Operat iOnF; Y-

ecutor oe) method of the ConcurrencyController interface. Any concurrcncy

control implementer would only need to implement those three methods and hook

113

the new implementation into CEFX by using the extension point mechanism (see

chapter 5). The setoperationExecutor(OperationExecutor oe) method of the
OCCI is called by the CEFXController after instantiating the OCCI. The OCCI then

initialises itself by calling the finit (OperationExecutor oe) method of its super-
class (AbstractconcurrencyControllerImpl). In the following sections the

prepareExecution(Operation o) and the checkConf lict (operation o) method

implementations are discussed.

4.1.1.5. Preparing the execution of an operation

A remote operation has to be processed before it can be executed. This processing is

done in the prepareExecution(Operation o) method of the OCCI. The activity

diagram in figure 4.6 shows the different steps of execution.

If the history buffer is empty the remote operation is executed directly, the state vec-

tor is updated and the operation is added to the history buffer. If the history buffer is

not empty, the following steps are executed.

1. Find the position of the last operation 0, in the history buffer that totally pre-

cedes the remote operation 0, (0, * O,).

2. Copy the tail of the history buffer into a list of concurrent operations (concurrent

operations vector, COV), starting from the position of the last totally preceding

operation up to the last operation in the history buffer.

3. Add the remote operation to the COV.

4. Sort all operations in the COV by their total order.

S. Undo all operations in the history buffer starting at the end of the history buffer

up to the last totally preceding operation.

6. Find all conflicts of the operations in COV (input argument of "find and classify

conflicts") with the remote operation and classify them. The result is a list of

conflicts (ConflictList).

7. Resolve all conflicts in the list of conflicts. First process the real conflicts (if

any) then process the resolvable conflicts.

114

8. Again sort all operations in the COV by their total order.

9. Redo all operations in the COV in their total order by calling "execute and up-

date" for each of them.

a11 I: ca:

. ý. .ý

execute and update
redo

;:. e, a"ý=h, all : c*-s,,: ' operations
: ýýstc";, ,. fte" is e^-:! 0. K update in

bc
COV in

sl stow
opwýý

verlor
IMlr blal

urdw

E

pece0ing add

ration operation
to his" sort

tulle. °n"ation f
in COV by

copy tall of
hisbry buffer

resolut conflicts
(HBf Istarbny

sdd
st Isst opsrshons s proe ýss

preceding) b
r'

i7D

in MB f- resol vsbM
list of b COV .

last to 4s1 conlhcb coo lýcb
coýc""s"" crad. pp
opýrahons

COV
,,, ýfllgUS:

find and cbssitf ooMliets

o-0

Figure 4.6: Prepare execution activity diagram

Finding and classifying conflicts

Each remote operation is checked for a possible conflict. This is done in the method
findAndClassifyConflicts(Operation 0, List<Operaticn - : onr. urrent-

operations) in the OCCL For each operation in the COV the

checkConflict (Operation o, Operation co) method is called. The first argu-

ment of this method is a reference to the remote operation. The second argument is a

reference to the concurrent operation from the COV. In this method the Con-

flictResolutionProvider (CRP) is called in order to retrieve a

Conflict Type Specification (CTS), a Conf1ictResolut_ionHint (CRH) and a

conflict type. The Conflict Type Specification indicates the reason for the conflict

115

and the ConflictResolutionHint indicates how the conflict should be resolved.
With the help of this information the operations are classified into resolvable con-

flicting, unresolvable conflicting and not conflicting operations. This classification is

indicated by the conflict type.

, oc"ircr; L"Ero ; crt'cIIel-cI irte'face.

.
ý.. c rfIi Qi. esc IutlcrF'c vI Je'

fi^oArDCIassif; __-flits- Oce'aticr CZ: ',; List -: Dce, atic, ý

-. e . crfIIc Li; t -crfliýUst

----------- >

-:. f'EO! ýCrfliý C ý--CE'eti: r cc ScE'9tic^

�='fhcT; ceScfaftcaticr= get'- --fli=Tyr: eSc*afic&ticm cc
III t

I, ticr-i^t=; e t: crfliciAesoluticrSt"atedp cts CcrffiaTyceS'eaficstic^

ir: = detCC^fhaT1c¬, OCe- ti: r ,: OCi"B: IC^

C_rfliclrfc; cts:: rfIi Tyce56ecificsticr ah ^fIiýA. 5
----'-^__'_----'------------------------- " '"___------- -

.. Y: ýtE"etiCr p C: fliýlrf:

Figure 4.7: Check conflict sequence diagram

For each conflict type a map is created that maps each operation to its specific CTS

and CRHa". The CTS and the CRH are thereby stored in a conflictznfo object. The

result of this classification is a conf1ictList containing the maps of operations for

each conflict type. The sequence diagram in figure 4.7 shows the calls to the con-

fl ictResolutionProvider.

Resolving conflicts

After all conflicts have been found and classified, they need to be resolved. In the

best case no unresolvable or "real" conflicts exist. In the default implementation of

CEFX all possible conflicts are resolved and thus no "real" conflicts can occur.

"' ('RP, CTS and CRH are further discussed in chapter 4.1.2

116

However, the ConflictResolutionProvider was designed so that it can be re-

placed by a different implementation that knows cases of unresolvable conflicts. This

may make sense in other work flows where, for example, the users should be notified

directly if a certain conflict occurs.

In the implementation of OCCI, the "real" conflicts are handled in the processReal-
Conflicts(List<Operation> cov, Operation ro, ConflictList cl) method.

The activity diagram in figure 4.8 shows how this is done.

: all:: C": c*ss=eB1t: ^}II`^s "E"ý". "

Eld^'=}. ' all : CE'BII: rS I^ 'EBI:: r}IIQ. "CE'Bil: ^S IIS:,

crto cF- ", Ce

process Conflict
Resolution Hint ICRHý act as indlca4d by CRH

Real =nflicts car

not OORY in the

WctOtyp*

bfy CII. nt of r. aI connffhct ^' CI*, *ntat. Cr

!r us It'IS Call Aas

n:! "cl, s ^fnt"

%06, i *o : PH kom

cimm

Figure 4.8: Process real conflicts activity diagram

If a "real" conflict exists the CRH indicates to notify the client. This is done by call-
ing the notifyOfRealConflict(ConflictTypeSpecification cts, Operation

o, operation co) method of the OperationExecutor which returns a con-

flictResolutionHint. After receiving the CRH from the client the corresponding

action, as indicated by the CRH, should be taken. However, as this case cannot occur
in the default implementation of CEFX, this was left open to third party developers

using a different conflictResolutionProvider implementation.

Resolvable conflicts are processed in the processReso I vabl ecalf Iiýýt s (j, i st - op-

eration> cov, operation o, conflictList ci) method of the OCCI. Figure

4.9 shows how these conflicts are processed. When the proses Resol vohl ocon-

117

flicts (...) method is called, the list of concurrent operations (COV), the remote

operation and the list of conflicting operations are passed as arguments. The Con-

flictList contains a map of resolvable conflict operations (RCO) and their

corresponding CRH. All operations in the RCO are then processed in two steps. First

all operations are identified that are in conflict with the remote operation, but the

conflict is resolved automatically (see "identify operations with automatically re-

solved conflicts" in figure 4.9). These operations are then stored in a list of

automatically resolved operations (ARO). In the second step the remaining conflicts

are resolved (see "process remaining operations" in figure 4.9).

For each operation in the RCO the CRH is processed. Three different CRHs are used
in this implementation of the ConflictResolutionProvider.

" LOCAL BEFORE REMOTE

" REMOTE BEFORE LOCAL

" DISCARD REMOTE

The CRH LOCAL_BEFORE_REMOTE specifies that the local operation must be executed

before the conflicting remote operation. The CRH REMOTE_BEFORE_LOCAL specifies

that the remote operation must be executed before the conflicting local operation.
The CRH DISCARD_REMOTE specifies that the remote operation must not be executed

and should be marked as discarded. Discarded operations are not removed from the

history buffer and are treated as normal operations. The only difference to normal

operations is that their execution will have no effect.

118

ad ProclssResotvabl. Cortllicb

:Bnt: r: aESS° E S. ý. s: I. C: rfllcts

''Ele^'=f: '¬B' :: E'8'I: ^ ^'ES: I: BCIl^.: ^fI1Ci` Btl_nf PZ"" Isst,

identify operations with aubmatiealy r. solvsd conflicts

set
ramose

:: PH == CISCARC RENKTE'
_ as

discarded

csitcr of Icoal cct'Bn: r lmcte op! 'Btlcr

process "t"Ise:
Conflict

Resolution ;: PH =- Lo: AL_BEF ; PE_REI. I ATE;

Hint CRH

Mid : RN == RE6. tCTEBEFpRE LCI"., AL;
; rue: operation

to list of
ubmabealy

resolv*4

: vuo: 4: operation is

t: . Sitlcr .. f "lm ct! t: BtlOr = 1_dl . Co"Bticr local OCY it. ^. ̂
ARý

BI'lsOy
dnyrola"

; false; PO

remove aubrnabcally resolved

opersfbns from sort operations in

resolvableConflictOp11ratrons
r'BsolvabloConflick)perabons

list list by t . ir total order

[xeeght=t: '! ad' :. 'aber m "es: lo. cl. crtllaOca'Bnc^s Pý ý list,

process ransoming operations
Ot'4 CRH typ!

:: PM==LOCAL BEFOPE_REMOTE 66 ocsmcr
process of local : ct'Btlcr , '! ^': t! oct'B[Icr"

CRH

switch state
'CRH=. REMMOTE_BEFORE_LOC L && Ocs t or vKbr of
of remote ookstior > local oc,. stion; operations

PO

T ___I
'otu"

Figure 4.9: Processing resolvable conflicts activity diagram

Discarded operation can be marked as not discarded again if, for example, the opera-

tion that lead to the discarding of another operation is undone.

119

Identify operations with automatically resolved conflicts

For each local operation O, in RCO the CRH is checked. If the CRH is REMOTE_BE-

FORE_LOCAL the position Pi of the 01 in COV is compared with the position P, of the

remote conflicting operation Q. in COV. If the position of the remote operation is

greater (P, > P,) than the position of the local operation (O, * O,) and 01 is not

marked as discarded, the conflict will be solved in the second step ("process remain-
ing operations"). If P, < P, or O, is marked as discarded then Or is added to the list of

automatically resolved operations (ARO).
If the CRH is LOCAL_BEFORE_REMOTE the positions are compared in the same way. If

P, > P, and 0, is not marked as discarded, the conflict will be solved in the second

step. If Or is already discarded or if P, > Pi the operation is added to the ARO list. In

the case of a DISCARD_REMOTE CRH the remote operation is marked as discarded and

then added to the ARO list.

Process remaining operations

After the automatically resolved conflicting operations are identified, they are re-

moved from the RCO. All remaining operations in the RCO are then sorted again by

their total order. The next step is to solve the remaining conflicts. This is done by

swapping the state vectors of the conflicting operations depending on the CRH. If the

CRH is LOCAL_BEFORE_REMOTE and the position P1 of the local operation O1 in COV

is greater than the position P, of the remote operation 0, in COV, the state vector of
O, is swapped with the state vector of Or. The same is done if the CRH is

REMOTE_BEFORE_LOCAL and P, > Pi. After processing all operations, the method re-

turns.

Swapping state vectors of operations

The swapping of the state vectors is done in order to change the total ordering posi-

tion of an operation within the COV. In the case of two concurrent operations with
identical state vector values, the client id is the determining factor for the total order-
ing position of an operation. Thus, together with the state vector the client ids are

swapped. Algorithm 2.1 specifies how the state vector swapping is implemented.

120

Algorithm 2.1. State Vector Swapping (SVS)

1. Copy the state vector of the remote operation Or and store it in a local variable

SV,.

2. Copy the client id of Or and store it in a local variable CID,.

3. Set the state vector of Or to the value of the state vector of O,.

4. Set the client id of Or to the value of the client id of O,.

5. Set the state vector of O, to the value of SV,.

6. Set the client id of O/ to the value of CID,.

4.1.2. Conflict Resolution Provider

. irt*, faoa.

CoMM, CeR*solunonP. onde.

ge? C on RrctResolu± onS'rare;:, C cr'cr'. ce . ec'ca7 -- ,': -c.
ye: Coý. fl, C'Specrfroatro lOpeý6on ýceea: ' : c-. '; c -: oe_cec'a:
getConf; ccivpe40petstron Ope. shor nt

- : e''ýý_ýýeýciCOn. 'ýDllerLConcI rrerc i'or't. ^; 'eý c

DNauIICo fl i ctR* solubo Prov ms rImpl

o' Mctswdfl vatic,

y7ELETE_ý-
-ýI IE_T<RGET

- RE1.1CTE_TARGET_IS_IN_S-ET°EE_EE. TE_ýE'ý. "F

- -'CAL_TARGET_IS_IN_SUBTREE_E"E: _TE_ý-_-. _E-ETE
- EELETION_OF_UPDATE_TARGET ',]_E

- : ELETION OF_UPDATE_SUBTREE

-^ ELETION_OF_INSERTPARENT

" -E LET ION OF_INSERT_SUBTPEE

- JFCATE_OF_SAMME NODE

- DELETION OF TARGET NODE

_E-ETION CF FI-". NJCE

"fnu'ýf"ýfi Or.
CMAICý1101u onH, M

E^1. T

" DISDARD_B"TM

. cRDER By CLIEIJT Fal: -l',

" LOCAL_BEFORE_REA1; 'E

- RE K%CTE_BEFORE_LO, l_
CISOARD_REE OTE
DISCARD L : LAL
NOTIFY CLIENT

Figure 4.10: ConflictResolutionProvider class diagram

The job of the conflict resolution provider is to identify a conflict and provide the

ConcurrencyController With a Conflict Resolution Hint defining an action that

121

is to be taken in order to resolve the conflict. The class diagram in figure 4.10 shows

the relations between the ConflictResolutionProvider interface and its imple-

menting class, the DefaultConflictResolutionProviderlmpl. The

Default Conflict Resolution Provider Impl (DCRP) class has methods for check-

ing operations of a specific type (delete, insert or update). They return a specification

of a conflict as defined by the ConflictTypeSpecification enumeration. For ex-
ample, the method checkInsertDelete (Insertoperation insert,

DeleteOperation delete) is called if the remote operation is a delete operation

and the local operation is an insert operation. The two concurrent operations are then

checked for a conflict and the information on the type of conflict, if any, is returned.
The DCRP then uses this information in order to provide the concurrencycontrol-

ter with a corresponding conflict resolution hint as defined by the enumeration
ConflictResolutionHint.

The following tables show the mappings of confiictspeciticationType values to

ConflictResolutionxint values as used by the DCRP implementation for specific

types of two concurrent operations leading to a resolvable conflict.

Delete - Delete

Remote Operation Type Local Operation Type

Delete Delete
Conflict Specification Type Conflict Resolution Hint

DELETE OF SAME TARGET DISCARD REMOTE

REMOTE TARGET IS IN SUBTREE EXECUTE REMOTE DELETE FIRST REMOTE BEFORE LOCAL

LOCAL TARGET IS IN SUBTREE EXECUTE LOCAL DELETE FIRST LOCAL BEFORE REMOTE

Table 4.1: Conflict types and resolution hints for two delete operations

For two concurrent delete operations three possible conflict scenarios exist:

0 Both operations delete the same target. The resolution is to discard the remote

operation. Both operations have the same effect when executed, they delete the

same target node. Thus it is not important which of the two operations is dis-

carded. Discarding the remote operations is an arbitrary decision. Alternatively,

122

it would be possible for example, to discard the operation with the greater posi-

tion value in the COV.

" The target node of the remote operation is part of the sub tree that is to be de-

leted by the local operation. The resolution is to execute the remote operation

first.

" The target node of the local operation is part of the sub tree that is to be deleted

by the remote operation. The resolution is to execute the local operation first.

Delete - Update

Remote Operation Type Local Operation Type

Delete Update

Conflict Specification Type Conflict Resolution hint

DELETION OF UPDATE TARGET NODE LOCAL BEFORE REMOTE

DELETION OF UPDATE SUBTREE LOCAL BEFORE REMOTE

Table 4.2: Conflict types and resolution hints for delete and update

For a delete and a concurrent update operation two possible scenarios exist:

" The remote operation deletes the target node of the local update operation. The

resolution is to execute the local operation first.

" The remote operation deletes the sub tree that contains the target of the local up-
date operation. The resolution is to execute the local operation first.

Delete - Insert

Remote Operation Type Local Operation Type

Delete Insert

Conflict Specification Type Conflict Resolution hint

DELETION_ OF INSERTPARENT LOCAL_BEFORE_REMOTE

DELETION OF FIXNODE LOCAL BEFORE REMOTE

DELETION OF INSERT SUBTREE LOCAL BEFORE REMOTE

Table 4.3: Conflict types and resolution hints for delete and insert

123

For a delete and a concurrent insert operation the following conflict scenarios exist:

" The remote operation deletes the parent node of the node that is to be inserted by

the local insert operation. The resolution is to execute the local operation first.

" The remote operation deletes the fix node of the node that is to be inserted by the

local insert operation. The resolution is to execute the local operation first.

" The remote operation deletes the sub tree that will contain the node that is to be

inserted by the local insert operation. The resolution is to execute the local oper-

ation first.

Update - Delete

Remote Operation Type Local Operation Type

Update Delete

Conflict Specification Type Conflict Resolution Hint

DELETION_ OF TARGET_ NODE REMOTE_BEFORE_LOCAL

DELETION OF UPDATE SUBTREE REMOTE BEFORE LOCAL

Table 4.4: Conflict types and resolution hints for update and delete

For a remote update and a concurrent local delete operation the following conflict

scenarios exist:

0 The local operation deletes the target node of the remote update operation. The

resolution is to execute the remote operation first.

0 The local operation deletes the sub tree that contains the target node of the re-

mote update operation. The resolution is to execute the remote operation first.

Insert - Delete

Remote Operation Type Local Operation Type

Insert Delete

124

Conflict Specification Type Conflict Resolution Hint

DELETION OF FIXNODE REMOTE-BEFORE-LOCAL

DELETION_OF INSERTPARENT REMOTE_BEFORE_LOCAL

DELETION OF INSERT SUBTREE REMOTE_BEFORE_LOCAL

Table 4.5: Conflict types and resolution hints for insert and delete

For a remote insert operation and a concurrent local delete operation the following

conflict scenarios exist:
" The local operation deletes the fix node of the insert operation. The resolution is

to execute the remote operation first.

0 The local operation deletes the parent of the node that is to be inserted by the re-

mote operation. The resolution is to execute the remote operation first.

0 The local operation deletes the sub tree that will contain the node that is to be in-

serted by the remote operation. The resolution is to execute the remote operation
first.

If no conflict is found, the ConflictResolutionProvider will return the Con-
flictTypeSpecification value NO_CONFLICT for a pair of concurrent operations.

In this case the CRH value is set to NONE. Other possible CRH values, next to the

ones described above, are:

0 DISCARD_BOTH. This indicates to mark both concurrent operations as discarded.

0 DISCARD-LOCAL. This indicates to mark the local operation as discarded.

" ORDER_BY_CLIENT_PRIORITY. This indicates to order the operations by client

priority instead of their total order.

" NOTIFY_CLIENT. This indicates to notify the client of the conflict in order to re-

trieve a CRH from the client application. This may be used for cases where the

conflict should be solved by a user action.

These CRH values are not used in this implementation of the ConflictResolution-
Provider but were defined so that they can be used by third party implementers of
the ConflictxesolutionProvider interface.

125

4.1.3. Operations

The basic set of operations used in this concurrency control algorithm includes insert,

delete and update. Moving of nodes is achieved by delete and subsequent insert oper-

ations at the application level. For moving a whole sub tree of a document only one

delete and one insert operation is necessary keeping a move operation affordable in

terms of application performance. An operation is executed on an element node N(

NE D). Element nodes contain a map of attribute nodes AMN and an ordered list of

child nodes CLN41. Element nodes are identified by the above-mentioned UUID. D

denotes the XML document tree containing all nodes of the current document as spe-

cified by the W3 C.

The used operations are defined as follows:

" INSERT(N, LOC(X, REL(C, 0)), SV, CID)

" DELETE(N, SV, CID)

" UPDATE(N, NMOD(AM, TL), SV, CID)

LOC (X, REL (c, o)) denotes a location within the XML document. The location is spe-

cified by the target node X that will become parent of the new node and the relative

position (REL) to an existing child element node c. o denotes the relative location be-

fore c, 1 denotes the relative location after c. If the target node does not contain any

child element nodes, the new node is simply appended. sv denotes the state vector of

the generating client site, CID the identifier of the generating client site. All sites that

are part of a concurrent editing session receive the CID from the session server, when

they join the session. NMOD denotes the modification set that is applied on the node N.

A modification set contains a map of modified attributes AN and a list of modified

texts TL. An attribute A (A E AM) existing in N (A E AMN) is updated to the new

value, a new attribute (A0 AMN) is added to the corresponding node and an attrib-

ute A9 AM and AE AMN is removed from AMN. Figure 4.11 shows the Operation

interfaces and implementing classes.

See the Document Object Model specification for the definition of DOM element nodes at:

http: //www. w3. org/DOM/, retrieved October 30,2007

126

cd Opeechons

SK iýýZiDli

r irti lsm.

Ope, ohm

ge; C: rno, ..

g-ý Pei r:

ge; rigetb: Sc'-;
-oc, EýecuborO, er: e : . _ceaý

oc . eOnesheni ý.
_ ý. r

3e: 5: a; e Vectog5; are ve: ro ..
_Jýac're, booleiin

ier, ro e bo, 1lin VC

3C , cameo. crc ea'
se: G.; ra'cec or ea"
serC:. e^nc. .. _

. irte"ISOen "irltfo s iýntl, fi Clý
Update00lriton I'r

or

perilon pNekOperibon

getM: aeýPOS:, cýi . VeOlPC _.;. cý

UpdsWOVlratimlmp ins«gpiriýionYnp ý ýr ^M ̂W

OperiaooFaclory

- =,. 1-; er) e"o - 'StFc - -recc _E''. ýI, r Jce _

Noot Stote'eUot CEF-. OIiE^'. 7C{rarior

Figure 4.11: Operation interfaces and classes

The operation interface is the main interface for all three types of operations and

defines the methods that all operations have in common. An additional interface ex-

ists for each operation type (update, insert and delete). These interfaces inherit the

methods from the operation interface. The classes updateoperationlmpl, In-

sertoperationImpl and DeleteOperationlmpi implement those interfaces. The

operationFactory is a utility class for the instantiation of operation objects.

The operation interface defines the following methods:

" boolean execute(ExecutionContext context);

" int getClientId(;

" StateVector getStateVector(;

" int getType();

" String getClientName();

" String getTargetld();

" boolean undo(ExecutionContext context);

127

" Operation cloneOperation(;

" void setStateVector(StateVector sv);

" boolean isDiscarded();

" void setDiscarded(boolean discarded);

" void setClientId(int id);

The method execute (ExecutionContext context) is called by the Concurrency-

controller in order to execute an operation. The ConcurrencyController thereby

acts as the ExecutionContext. The undo (ExecutionContext context) method is

called by the Concurrencycontroller in order to undo an operation for example

when removing it from the history buffer. The method cloneOperation () is used to

copy an operation before it is propagated to the other sites. As the NetworkControl-

1er runs in its own thread, it might occur that the operation is modified by another

thread before it is eventually transmitted over the network. In order to make sure that

the correct operation's state is transmitted, a copy of the current operation's values is

taken before passing it to the NetworkController. The method getType () returns

the type (delete, insert or update) of the operation. This is used, for example in the

DCRP in order to easily identify the type of an operation. The method getclient-

Name () returns the name of the client that created the operation. This is used for de-

bugging purposes and in order to be able to later identify the operation's originating

client if the client id has been swapped. The other getter and setter methods are used

as their names indicate for retrieving or setting property values of the operation.

The following sections discuss the three different operation implementation classes.

128

4.1.3.1. Insert

Figure 4.12 shows the Insertoperation interface and its methods.

«1 r2E'fa ce.

ope'atio"

- ge,,, -e, 7;: :-, c- ý-aepc-- * ý,

InsertOperaticmimpi

Figure 4.12: InsertOperationlmpl class

The InsertOperation interface defines the getlnsertPosition () method. All

other methods are inherited from the operation interface. The Insertoperation-

Impi class implements Insertoperation and defines a constructor that requires the

following arguments in order to instantiate a Insertoperationlmpi object:

" Node -a reference to the org. w3c. dom. Node object that is to be inserted in the

document.

" NodePosition -a reference to the NodePosition object that defines the loca-

tion where to insert the new node.

" statevector -a reference to the statevector containing the initial state vec-

tor values for this operation.

" String - the name of the client that creates this operation as st r ng.

" int - the identifier of the client that creates this operation.

Node

The node which is inserted when executing an insert operation must implement the

standard org. w3c. dom. Node interface object as defined by the World Wide Web

Consortium. When the operation is transmitted over the network, it is serialized into

a byte stream. The node that is contained in the operation must therefore also imple-

129

ment the java. io. Serializable interface. This requirement is fulfilled for ex-

ample by the Apache Xerces DOM implementation which is used in this works
implementation.

NodePosition

The NodePosition class represents a location within a
document. It holds three properties: The UUID of the par-

ent node, the UUID of the fix node (the checkpoint node)

and information on the relative position to the fix node.

The relative position is indicated by the value o for a po-

sition before the fix node and the value 1 for a position

cd Nod. Position, /

Wod. Position

' c131i: eVse'tFcs

Figure 4.13: Class

after the fix node (see definition of LOC (X, REL (c, o)) at
NodePosition

the beginning of this chapter).

Executing an insert operation

When the execute(ExecutionContext context) method of the Insertopera-

tionlmpl class is called, the following steps are executed:

" Refresh the context's map of nodes by calling context. ref reshNodeMap O.

This is done in order to make sure that all existing nodes within the document

can be found easily.

" Check if the operation is marked as discarded and if it is, do nothing and return.

" Insert the new node at the given position (NodePosition) within the document.

This is done by using the standard DOM interface methods to manipulate the

document. For detailed information on the implementation, please refer to the

thesis' attached source code.

" If the node was successfully inserted, the context's map of nodes is refreshed

again.

130

Undoing an insert operation

The undo (ExecutionContext context) method is used to recreate the document's

state before the execution of the insert method. The following steps are executed

when the undo (ExecutionContext context) method is called:

0 Check if the operation is marked as discarded. If it is, do nothing and return.

0 Locate the parent of the node that was inserted by using the parent's UUID. The

parents UUID is stored in the NodePosition object of the insert operation.

0 Remove the target node from its parent's list of child nodes.

0 Refresh the context's map of nodes so that it only contains the nodes that exist

within the document.

4.1.3.2. Delete

Opern, o'

«irte'fsoa:

De(eteOperabon

Del. eOperationknpl

4 CEIc! ¬ _ _7C^I^ CI St's^, y c 5'E"Fu_' ="i^ ^.,

Figure 4.14: DeleteOperationlmpl class

Figure 4.14 shows the Del eteoperation interface and the De Ieteoper<ition tmpi

class.

The DeieteOperationzmpl class implements the DDeieteoperdt in interface and

requires the following arguments to be passed to the constructor in order to instanti-

ate it:

" string - the UUID of the node that is to be deleted.

8 statevector -a reference to the statevector containing the initial state vec-

tor values for this operation.

0 string - the name of the client that creates this operation as st ri nq.

131

" int - the identifier of the client that creates this operation.

Executing a delete operation

When the execute(ExecutionContext context) of the Deleteoperationlmpl

class is called, the following steps are executed:

" Refresh the context's map of nodes.

" Check if the operation is marked as discarded and if it is, do nothing and return.

" Find the node that is to be deleted (the target node) by using the given UUID.

" Retrieve the parent node of the target node and memorize a reference to it for a

later undo.

" Memorize the relative position of the node that is to be deleted by storing a ref-

erence to node next to the target node.

" Remove the target node from the parent node's list of child nodes.

" Add the removed node to the context's map of deleted nodes using the operation

as key and the node as value. This allows to find a node that was deleted by a

specific operation easily if the operation is undone and the node must be inserted

in the document again.

" Refresh the context's map of nodes again in order to remove the deleted node

from it.

Undoing a delete operation

The following steps are executed when the undo (ExecutionContext context) op-

eration is called on the Deleteoperationzmpl class:

" Check if the operation is marked as discarded and if it is, do nothing and return.

" Retrieve the deleted node from the context's map of deleted nodes.

" Insert the node at the memorized position below its parent node.

" Refresh the context's map of nodes in order to include the inserted node again.

132

r- -I

4.1.3.3. Update

Figure 4.14 shows the UpdateOperation interface and its implementing class up-

dateOperationImpl.

Operaf, or

ýIr! E"f9 JEn

UpdateOperabon

UpdateOperationlmpl

a ýcJS[¬3 ... "s: iCr ^-Cl. ýt"ird ýrcoef. ': - fý &: ýcr c's: e; cýc" =t. i^d i""

Figure 4.15: UpdateOperationlmpl class

The following arguments have to be passed to the constructor of UpdateoperatI on-

zmpi to instantiate an object:

" string - the UUID of the node that is to be updated.

0 NodeModification - the information on what is to be modified. This object

contains all information on changed attribute values or text content values.

0 statevector -a reference to the statevector containing the initial state vec-

tor values for this operation.

0 string - the name of the client that creates this operation as st ring.

0 int - the identifier of the client that creates this operation.

NodeModification

The NodeModification class was designed for two reasons:

1. To provide a simple method for storing the modified state of a node object. A

node thereby can be modified using the standard DOM API methods. After

modifying the node, it is passed as argument to the constructor of the NodeModi -

fication class which then stores all changes in the new NodeModification

133

object.

2. To provide a container format to transmit these modifications over the network

without having to transmit a complete node including possible child element

nodes. This allows reduction of network traffic when executing update opera-

tions.

TextUpdate Sena zeNe

IeftSiclingId St"in3 = -ulk
IdodeModification

iphtSichnglo St'in. 3 3;. '1C: ý225 __ e iV91ue St"i^a =
-, 94--des

Figure 4.16: NodeModification class

A NodeModification object stores the attributes and the text content of a node. The

attributes are stored in a mapping table containing all attribute names and their cor-

responding attribute values.

The W3C DOM API specifies, that the text content of an element node42 is stored in

a Node object of the type TEXT_NODE. These specialised text nodes only carry a text

as content and have no child nodes. Within a NodeMoaification object the text con-

tent of an element node (the content of all of its text nodes) is stored in a list

containing objects of the type Text[pdate. A TextUpdate contains the QUID of a

text node's parent node (the target node), the UUIDs of its left and right siblings (if

existing) and the text content.

Figure 4.16 shows the properties of the TextUpdate and NoaeModification classes

and their connection.

Executing an update operation

When the execute(ExecutionContext context) of the Updateoperationlmpl

class is called, the following steps are executed:

0 Refresh the context's map of nodes.

Element nodes can carry attributes, text content and child nodes.

134

" Check if the operation is marked as discarded and if it is, do nothing and return.

" Locate the target node in the context's document by using the UUID.

" Normalize the target node's text content43.

" Store the current state of the target node in a NodeModification object in order

to be able to do a later undo of the operation.

" Apply the modification of the node as defined in the operation's NodeModifica-

tion object. This is done by using the standard DOM API methods.

" Refresh the context's map of nodes.

Undoing an update operation

The following steps are executed when the undo(ExecutionContext context)

method is called on the Updateoperationlmpl class:

" Check if the operation is marked as discarded and if it is, do nothing and return.

" Refresh the context's map of nodes.

" Locate the target node in the context's document by using the UUID.

" Normalize the target node's text content.

" Apply the modification of the target node as defined in the previously stored No-

deModification object to restore the old node state.

" Refresh the context's map of nodes.

4.2. Testing CMAX

A simulation software was developed prior to the development of the Concurrency-

Controller implementation. The simulation software was used in order to test the

CMAX software implementation during the development process.

The simulation algorithm simulates an arbitrary number of users (usually three users

are chosen) working concurrently on a shared XML document. It consists of a client

component part and a server component part. The client component simulates the

editing application and the user's actions that lead to a modification of the shared

document. The server component handles the session management.

41 Normalizing a node makes sure that there are neither adjacent text nodes nor empty text nodes. See

the W3C DOM API specification for a detailed explanation of the normalize function.

135

When the simulation is started each client connects itself to the server and retrieves a

copy of the shared XML document (the simulation uses an XML DocBook44 docu-

ment). When all clients are connected the editing session is initialised and each client

concurrently executes random operations on the shared document. After a certain

time the process is stopped and each client's and the server's document is stored. The

test was deemed successful if all documents were identical.

In order to test the algorithm on certain concurrent operations that are known to be

problematic, the simulation algorithm was extended. With that extension the simula-

tion algorithm was provided with a list of operations that each client has to execute at

a certain time. This allowed testing the software on both certain problematic opera-

tion scenarios or on random operations.

This simulation procedure helped to reduce development time and increase the stabil-

ity of the CMAX software implementation. Without this simulation procedure it

would have been more difficult to test cases where, for example, three users concur-

rently access the same node of a document.

The client and the server component use the orderingConcurrencycontroiierzm-

pi implementation discussed above for the synchronisation of the XML document.

The following section briefly discusses the implementation of the simulation proced-

ure as a practical Java software implementation.

4.2.1. Simulation software implementation

Figure 4.17 shows an overview of the client and server components of the simulation

software and their connections to each other and the concurrency controller imple-

mentation. The client is represented by the client interface which is implemented

by the simulationclient class. The server has a reference to each client that is con-

nected to the session. The server is represented by the server interface which is

implemented by the SimulationServer class. A client knows the server (through

the server interface), as the server provides the client with a copy of the shared doc-

ument. Each client and the server own a Concurrencycontroiier object.

When a client or a server is initialised, an object of the type OrderingConcurrency-
XML DocBook is an XML based markup language for technical documentation.

136

Controllerlmpl is initialised too and is provided with a reference to an opera-

tionExecutor.

.I "*-19 ce x %1

cent

p

- e= ecuteOperatidni : joeýa: o bcc; ea,

- _tft
f ewCGenh G.

_ . .ý,.
- zeftdenfrfej, rlt, vv-c

getlder, ffeý .
- Betrc-c, Te, cyf, ortrol. e, Eecýt. c,, Cc, -. e

Run Rabie

SimulationCh. nt ýse"ýe"

Rýrtýibýel

Sumul7bof1 Slrv«

. Irre, lea.
Server

- ; cayC"c. Tem.. _. ýq G'-ý
-

-e erLte9ce'a:. c Öceýa: o. c:.
- a, x . cectCer: C e, hco; ea'
-c aectC!, , tiCbent vo: a

. %shz4k.

Figure 4.17: Simulation software server and client components

As shown in the class diagram in figure 4.17 the OperationExecutor interface is

implemented by the client and the server. The Simuiationserver and Simulation-

client classes are implemented as threads (implementing the Sava. Iang. Runnable

interface). They run independent of each other and communicate only via the corres-

ponding interfaces. This allows each client to execute operations at any time,

independent of the other clients or the server. Although, the implementation eftbrt of

the simulation software increased because of the thread safety issues that needed to

be tackled, the benefits of the multi-threaded design of the simulation software were

worth the implementation effort.

The server interface defines the following methods:

" Document loadDocument(String docName);

0 void executeOperation(Operation o);

137

" boolean disconnectClient(Client c);

" void connectClient(Client c);

" Collection getConnectedClients(Client c);

" int getIdentifier();

From the perspective of a concurrency controller, the server acts like a client. It

therefore requires its own ConcurrencyController, a method to execute operations

and an identifier. The identifier of the server is always 0. The identifiers of the clients

starts from 1 up to the number of clients. The identifier is important for the creation

of operations, the statevector initialisation and the total ordering. The other meth-

ods are server specific. The methods connectClient(Client c),

disconnectClient(Client c), getConnectedClients(Clent c) and loadDoc-

ument (String docName) are used by the clients to connect to the server, retrieve a

copy of the shared document, get information on the other clients in the session and

to disconnect after the editing session ended.

The client interface defines the following methods:

" String getName();

" void setConnected(boolean c);

" boolean executeOperation(Operation o);

" void notifyOfNewClient(Client c);

" void setIdentifier(int id);

" int getIdentifier();

" ExecutionContext getConcurrencyController(;

Each client has a name and an identifier. The methods getName () and getldenti-

fier () are used to retrieve those client properties. Additionally an operation is

provided with a reference to the Executioncontext of a client, represented by the

clients concurrency controller implementation (see chapter 4.1.3). In order to retrieve

the Executioncontext of a client when creating an operation the getconcurrency-

Controller () method of the dient interface is used. The identifier of a client is

generated by the server when the client connects to it. The server uses the method

setidentifier(int id) to set a client's identifier. When a client is successfully

connected to the server, the server uses the setConnected (boolean c) method to

138

notify the client that it is connected to the editing session. The server subsequently

notifies all other connected clients of the new client connection by calling the method

notifyOfNewClient (Client c). Each client's concurrency controller requires a ref-

erence to all other clients taking part in the editing session in order to propagate

executed operations to them. The new operations are propagated by a call to the ex-

ecuteOperation (operation o) method of each client.

The sequence diagram in figure 4.18 shows the initialisation sequence of the simula-

tion software and the method calls between the client and server components. The

simulationcontroller initialises the simulation by executing the following steps:

" Create a new simulationserver object and initialise it.

" Create a number of simulationclient objects, provide them with a client

name and a reference to the simulationserver and initialise them.

" Configure each client on how it should create the operations for execution. A cli-

ent can either create random operations or use a fixed set of preconfigured

operations.

" Start the server thread.

" Start the client threads.

" Wait for a certain amount of time.

" Stop the client threads. Each client disconnects from the server by calling the

Server interface method disconnectClient (Client c) before it stops.

" Stop the server thread.

The initialisation of the simulationserver object includes the following steps as

shown in figure 4.18:

" Create an OrderingConcurrencyControllerImpl object and provide it with a

reference to the Executioncontext (represented by the server).

" Load the XML document into memory.

" Create the UUIDs for each node in the document and create a map of all nodes
in the document.

" Provide the concurrencyController with a reference to the document by call-

ing setDocument (Document localDoc).

139

0

n Ocratlc^E. *a ic"

-to

Slur Llati: r Bert

^Eý

sEtý: CL m! ^Y I: JIj): c. ýi: W^'! ^t

^!: .-s
ýcf"ea: ^EýEC.,. _

'ý! "ýrýC: rý, ^Er q: C�rt": IlNlmpl

x nd -e nE-t x^r aC ^h; "a

start

Vo,!

c^^e at III! ^t týIS: IIE^:

SE tO: r^. CX. 7't'ýc L:: ICB^

setIye^tlficý lo I^c

. :: if, ýflre"+ý I*, v c--I lca

^; EtZ: ^ý. Q. i l*^ts t^I: ýlic't

o: c st., -g,

stkct0". ti_, T. E,.. c,. to
%r

st: c

cclee^=: isoc^^.: tOIKý: : ̂ is bQ^"

X

Figure 4.18: Simulation sequence diagram

140

When the Simulationclient object is initialised it creates an OrderingConcurren-

cyControllerImpl object and provides it with a reference to the

ExecutionContext (represented by the client). After a client is started the following

steps are executed:

0 Connect the client with the server. The client calls the connectClient (Client

c) method of the server interface and provides the server with a reference to

the client.
0 The server calls the client's setconnected (boolean c) method and thereby no-

tifies the client that it is connected to the server.

" The server creates an identifier for the client and provides the client with it by

calling the setIdentifier(int id) method of the dient interface.

" The server notifies each client in the session of the new connected client and

provides them with a reference to the new client object by calling the method

notifyofNewClient(Client c).

" The client calls the method getConnectedClients (Client c) of the Server

interface in order to retrieve a complete list of all clients in the session. This is

done to make sure that all clients have a complete list of all other clients in the

session. Clients that join the session late use this method to get references to the

clients that joined the session earlier.

" The client retrieves the shared document from the server by calling the load-

Document (String doc) method of the server interface.

0 The client starts editing the document in a loop, selects different operations and

executes them. The concurrencycontroller of each client executes the opera-

tion locally and propagates it to the other clients as discussed in chapter 4.1.1

(not shown in the sequence diagram in figure 4.18).

141

4.3. Integration of CMAX in CEFX

The next step after implementing the CMAX algorithm in software was to integrate

the developed software components into the Collaborative Editing Framework for

XML (CEFX). CEFX consists of a number of loosely coupled components where

each component can be replaced by a different implementation.

This simplified the integration of

CMAX. The CMAX implementation

basically consists of a number of

classes including the concurrency
........................

controller, the conflict resolution conc�rrency
provider and the operations. In order operations

........................ to integrate those classes into the dom. adapter

CEFX default implementation, they exceptions

are arranged into two packages. The
reg+: try

first package is called the concur-

rency package. The second package, Figure 4.19: CEFX package structure
which is part of the concurrency

package, is called operations. Within the CEFX package structure these packages

are arranged as shown in figure 4.19. The concurrency package contains all classes

that are responsible for maintaining the consistency of a shared document. The main

component here is the concurrencycontroller as described in chapter 4.1. Within

CEFX the CEFXController binds the concurrencycontroller to the framework

and delegates all events concerning the execution of operations to it. The following

interfaces and classes are part of the concurrency package:

0 The ConcurrencyController interface and its implementing classes Ab-

stractConcurrencyControllerImpl and

OrderingConcurrencyControllerlmpl.

" The ConflictResolutionProvider interface and its implementing class De-

faultConflictResolutionProvider.

" The Conflict Type Specification and ConflictResolutionHintenumera-

tion.

142

" Utility classes such as the Conflict Info and ConflictList class.

The operations package contains all classes and interfaces that model operations

and are necessary for the execution of an operation. This package contains the fol-

lowing interfaces and classes:

" The operation interface and the sub-interfaces DeleteOperation, In-

sertOperation, UpdateOperation and the implementation classes of

operations: DeleteOperationImpl, InsertOperationImpl and UpdateOpera-

tionImpl.

" The operationFactory class for creating operations and other utility classes.

" The StateVector class.

9 The ExecutionContext interface which is implemented by the Concurrency-

controller implementation.

" The operationExecutor interface which is implemented by the CEFXControl-

1er.

" The NodePosition class for identification of a node's location within a docu-

ment and the NodeModification and TextUpdate classes for the update

operations.

The class diagram in figure 4.20 shows an overview of the packages, classes, inter.

faces and their correlation used for the software implementation of CMAX.

143

144

Figure 4.20: Overview of the CMAX classes and packages

4.4. Conclusions

The Java software components that are responsible for the consistency maintenance

are the ConcurrencyController and the ConflictResolutionProvider. They

were tested using simulation software that was specially developed for this purpose.

After testing and refinement, the CMAX algorithms were successfully integrated into

the Collaborative Editing Framework for XML (CEFX) which is fully discussed in

chapters 5 and 6.

145

Chapter 5. The Collaborative Editing Framework for

XML

5.1. Motivation

Cooperative work is a day-to-day activity in many areas. Software development

teams cooperatively develop applications or write documentation. Engineers cooper-

atively design a circuit diagram or work together on a 3D model of a new machine.
The documents that are cooperatively edited range from simple text documents over
2D graphics to complex 3D models.
However, software support for real-time group editing in commercial applications

today is uncommon. Thus support for collaboration is often limited to turn-taking,

split-combine and copy-merge. Existing real-time group editors - derived from re-

search projects - are usually very specialized and despite latest achievements in the

research field of Computer Supported Cooperative Work, many such systems suffer
from a lack of user acceptance in the professional area. One reason for this seems to

be a low motivation of users to learn new user interfaces and application functions if

they cannot see their personal benefit in the collaboration features (Grudin 1994).

Another reason may be that existing real-time group editors generally cannot com-

pete with established single-user editors regarding the functionality and usability
(Xia, Sun et al. 2004).

A more promising approach therefore is to extend accepted single-user editing ap-

plications with collaborative real-time editing functionality. The difficulty with this

approach is to extend an application transparently (that is without modifying the ap-

plication's source code) with as little effort as possible and at the same time

providing the best support for real-time collaboration.
The idea of the Collaborative Editing Framework for XML (CEFX) is to provide a

simple and flexible foundation for developing new collaborative real-time editing ap-

plications or enhancing existing single-user applications with collaborative real-time

editing functionality.

CEFX is composed of a number of loosely-coupled components. One component of

this framework contains the CMAX concurrency control algorithm as described in

146

chapters 3 and 4. Another component provides application developers with a simple-

to-use interface for integrating collaboration functionality into existing single-user

applications. Thereby, a novel integration mechanism makes use of standards such as

XML and the DOM API in order to support a variety of applications. Other compon-

ents manage the transmission of operations over the network or provide methods for

the integration of awareness mechanisms. The main component of CEFX is the CE-

Fxcontrolier which manages the communication between all other components.

The framework is designed as a flexible and extendible system in order to support

more applications, different work flows and requirements. The following section of

this chapter discusses contemporary collaborative systems and frameworks that sup-

port extending single-user applications with collaborative functionality. Next, the

framework architecture of CEFX and the main framework components are discussed.

5.2. Contemporary Collaborative Systems

Collaborative systems that allow the enhancement of a single-user application with

collaborative functionality are typically classified into collaboration-transparent sys-

tems and collaboration-aware systems. Systems that provide methods to share a

single-user application without changing the application are called collaboration-

transparent. The applied methods are unknown to the application and its developers.

Collaboration-aware systems integrate collaboration mechanism by changing the ap-

plication so that the application is aware of these. This allows a tight integration of

collaboration functionality into an existing application. The problem with the collab-

oration-aware approach is that it requires access to the source code of an application

which in some cases may not be possible for "off the shelf' software products.

The collaboration-transparent approach does not require access to an applications

source code. Two types of collaboration-transparent systems can be identified: ap-

plication independent (generic) and application dependent systems. Application

independent systems do not know the shared application. They work on basis of

transmitting low-level input/output data such as key-strokes, mouse movements and
display pixel data. Application dependent systems are used to enhance a specific ap-

plication with collaboration functionality and have knowledge of the application

specific data model.

147

Examples of contemporary application independent and collaboration-transparent

systems are application sharing environments such as NetMeeting4S, VNC46, HP Re-

mote Graphics47 or Netviewer48. They allow sharing the view of any single-user

application among a group of users. Such systems use a centralized architecture and

transmit mouse movements, key strokes and screen images via the network. All users

see exactly the same view of the shared application at the same time (strict WYSI-

WIS) but only one user at a time can interact with the application. In order to

coordinate the access to the application often a direct communication between the

users (via phone or chat) is necessary. These systems are useful and effective for

tightly coupled collaborative work, where independent interaction is not wished or

not required. Multi-user free interaction where each user can individually, for ex-

ample, work on a different part of a shared document is not supported.
An example for an application dependent system is the CoWord system by Xia, Sun

et al. (2004). Xia, Sun et al. propose the Transparent Adaptation (TA) approach for

the extension of single-user applications with collaboration functionality. In

CoWord, they have extended the Microsoft Word application transparently by mak-
ing use of the Microsoft application and execution environment APIs (Application

Programmers Interface). The TA approach requires each application to be adapted
before being shared. The user actions performed on the word document are thereby

intercepted and translated by the Adaption Layer into operations for the Operational

Transformation (OT) Layer, which is responsible for maintaining the consistency of

the shared document. The adaptation of an application requires the developer to have

a detailed knowledge of the application and execution environment specific API. Ad-

ditionally an interpretation of the user actions in relation to the current application

contexts is required. Operational Transformation (OT) (Sun, Jia et al. 1998) is used

for the concurrency control of a shared Word document. This requires to map each

operation executed on the application's data model into an operation that can be pro-

cessed by the OT concurrency control mechanism. This is the responsibility of the

Microsoft NetMceting. http: //www. microsoft. com/windows/netmeeting/, retrieved October 30,2007

Real-VNC. http: //www. rcalvnc. com/, retrieved October 30,2007

IIP Remote Graphics. http: //h20331. www2. hp. com/Hpsub/cache/286504-0-0-225-121. html, retrieved
October 30,2007

" Nctvicwer. htip: //www. nctviewer. de/, retrieved October 30,2007

148

Collaboration Adapter in CoWord.

However, mapping user actions to OT operations can become complex and requires

that the application's data model supports positional addressing of objects, which

may not be feasible for complex 3D modelling applications. These limitations of
CoWord are not inherent to the OT approach, but come from the design choices

made concerning the integration of concurrency control into an application.

The collaboration system underlying CoWord is collaboration-transparent, supports

relaxed WYSIWIS and can also be used in a collaboration-aware system design. For

the collaboration-transparent approach CoWord requires the execution environment

and the single-user application to provide a suitable API which can be used to inter-

cept and replay user input events and whose data and operational models are

adaptable to that of the underlying OT technique. If an application and the execution

environment provide a suitable API, the greatest effort lies in implementing the

translation of the user actions into operations required by the OT Layer.

Other collaboration-transparent systems such as the one presented by Ile, Ilan et at.
(2004) use a similar technique as in CoWord to enhance a single-user application

with collaborative functionality. Low-level I/O events such as keyboard and mouse

events are intercepted and translated into semantic commands. A so called Commu-

nicator collects high-level messages (such as CAD commands and model data) and
low-level messages and transmits those over the network to the other collaborating

sites. There they are translated into execution environment GUI commands or applic-

ation specific API calls.

A similar approach is proposed by Li, Li et al. (2003) called Intelligent Collaboration

Transparency (ICT). The focus of their work is on sharing heterogeneous applica-

tions of the same application family. They propose a system that allows extending

single-user applications such as GVim and MS Word. For each application a so

called ICT agent is implemented that captures events from the operating system and

the application, translates them into semantic operations and then transmits those to

the other collaborating sites, where the events are replayed in the form or a sequence

of editing events. Their event capture and replay mechanism makes intensive use of

application and operating system specific APIs and thus suffers from the same prob-
lems as the TA approach in terms of implementation complexity. Additionally the

149

complexity is increased by supporting heterogeneous applications. This requires a
formalisation of application semantics in order to be able to translate the user actions

of one application to the related user actions of another application.
The high implementation effort was one of the reasons for the second generation of

the ICT project, ICT2. In contrast to their previous work, ICT2 does not attempt to

intercept and understand the operating system level events. Instead it uses an adapted

version of the "diffing" algorithm (Myers 1986) to derive the editing sequences
between document states (Lu, Li et al. 2004). However, this new approach is not

suited for fine-grained real-time group editing such as TA and ICT, because of its

limitations in terms of performance. The support for heterogeneous applications is

limited to those that have the same coding system. Sharing a document between, for

example, Latex and Word is not supported. The diff algorithm that is applied sup-

ports text documents only. In order to support structured and formatted documents,

more sophisticated diffing algorithms would be required (Li and Lu 2006).

The Flexible JAMM (Java Applets Made Multi-User) project uses a different ap-

proach (Begole 1999). Single-user applications are enhanced by replacing selected

single-user components of the shared application with multi-user versions. This ap-

proach requires the underlying execution environment to meet certain conditions

such as capabilities for process migration, run-time component replacement, dynamic

binding and user input events interception and replay. The Java run-time environ-

ment is platform independent and meets these conditions. The common interface of

JAMM applications is Java Swing and Java Object Serialization (JOS). In contrast to

the other mentioned systems, the JAMM system does not require the development of

a translation layer in order to convert user actions into application semantic com-

mands or API calls, as long as an application is based on Swing and all application

classes are serializable. Although the number of Java Swing based applications has

increased in recent years, the number of single-user applications that fulfil the men-

tioned requirements is small.
To summarise, all approaches use a specific API in order to extend a single-user ap-

plication. TA and ICT both use an API on the operating system as well as at the

application level. The same is true for the approach of He, Han et al. (2004). JAMM

uses an API on the level of the runtime's graphical user interface (GUI) library. The

150

first three approaches face the problem of implementation complexity for each new

application that is to be extended. The JAMM approach has the problem of being de-

pendent on the fulfilment of certain runtime requirements.

The goal of the approach in this thesis is to reduce the complexity of integrating a

collaboration framework into a single-user application and provide a solution that is

more general, supporting many different types of applications. We argue that this can

be achieved by using aspect-oriented programming (AOP) and concentrating on the

application's data model instead of an application, operating system or GUI library

API.

The application data model describes how data is represented and used. For example
in a text editing application, the data model represents the text that is edited. The

structure of the data model can thereby be different to its visual representation. One

aspect of an application is the manipulation of the data model. The code for updating

or querying the data model can be distributed within the entire application. In the ter-

minology of AOP such aspects are called cross-cutting concerns. In this approach

firstly, these cross-cutting concerns or system-level-concerns within an application

are identified. Secondly, so called 'advices' that create events for the underlying col-
laboration framework in order to synchronise the data model between the different

sites are defined. This has the advantage that once developed, advices can be reused
for all applications that use the same methods for the manipulation of their data mod-

el. This is for example the case for all applications using the Document Object Model

(DOM) as a standard interface for the manipulation of XML content. Single-user ap-

plications that use the DOM as their internal data model can be easily extended

without the effort of implementing a translation layer. Another advantage is that het-

erogeneous applications can be used to collaboratively work on a shared document

because they only share a common interface, the DOM. Although new advices have

to be developed for applications that use other methods for the data model manipula-

tion, it is assumed that the implementation effort is lower in comparison to other

methods.

The number of existing and emerging XML applications and thus the number of

single-user applications using XML DOM as data model (native XML applications)

is growing. Today, the majority of these applications are general XML editors or spe-

151

cialized SVG graphic editors (such as Sketsa49, Amaya5° and GLIPSS1). Another ex-

ample for an application that extensively uses the DOM is OpenOffice. OpenOffice

uses OpenDocument'2 - an XML document format - as native file format.

An increasing number of applications exist that do not necessarily use XML DOM as

their internal data model, but provide a DOM API that allows directly accessing and

manipulating the internal data. These applications can also easily be extended by

CEFX without requiring the difficult implementation of a translation layer.

In the case where an application is not based on XML and does not provide a DOM

API, CEFX can also be used. This can be achieved by using similar methods as in

the Transparent Adaptation approach of CoWord or other transparent approaches. In

this case it would be necessary to implement a translation layer for converting user

actions into XML operations for the CEFX collaboration layer. Technologies such as

XML binding can dramatically reduce the time and effort of translating an internal

data structure to the XML data model.
The following sections of this chapter discuss the framework architecture and its

components. Chapter 6 discusses the implementation issues when developing CEFX.

The aspect-oriented approach to integrating CEFX into an existing single-user ap-

plication is discussed in chapter 7.

5.3. CEFX Software Architecture

The Collaborative Editing Framework for XML is based on a logical hybrid-architec-

ture. The hybrid architecture is a mixture of both the centralised and the replicated

architectures (see chapter 1.6.3). Each site holds a client and a server process as well

as a copy of the shared data resource (the XML Document). Additionally a server

site exists holding both the shared data resource and a server process. All operations

are executed locally before they are sent to the other sites to be executed, just like in

Sketsa. SVG Graphic Editor. http: //www. kiyut. com/products/sketsa/index. html, retrieved October 30,

2007

Amaya. W3C's Editor/Browser. Open Source. http: //www. w3. org/Amaya/, retrieved October 30,2007

GLIPS Graffiti Editor. Open source SVG graphics editor. http: //glipssvgeditor. sourceforge. net/, re-

trieved October 30,2007

OASIS Open Document Format for Office Applications (OpenDocument). OASIS Standard May

2005

152

the replicated architecture approach. Additionally the operations are also sent to the

server site. There they are executed as well. Turning to the question of the respons-
iveness, as in replicated systems, the hybrid approach has the advantage of having a

central site that holds the current correct version of the document. If a new site joins

the session, a copy of this version can be obtained easily.
In a logical hybrid-architecture, a central server does not necessarily exist physically.

It can exist for example only as a logical server running on any client of the collabor-

ation. This means that any client can be configured to additionally play the role of

the centralized server. The advantage of this is that no extra server hardware has to

be provided, because in some environments it may be difficult to do so for security,

monetary or political reasons. Figure 5.1 shows a deployment diagram with the serv-

er and two client sites.

Each of the CEFXCiient components (CEFxclient 1 and CEFXflI jer, t 2) and the

CEFXServer component have a NetworkController component. The Netwo>r uri-

troller of each client owns an incoming and outgoing port. The incoming port

represents the server process of a client providing an interface for other clients to

connect to and accepting incoming connections in order to receive remote operations.

The outgoing port represents the client process. It is used to connect to other clients

and to send operations to them. The cEFxserver component's Ne rwo rkcontroI icr

only has an incoming port providing an interface that allows other client to connect

153

Figure 5.1: Hybrid architecture with server and clients

and send operations to the server. Additionally to the interfaces shown in figure 5.1,

the CEFxclient and the CEFxserver components have interfaces to join and leave a

session, to retrieve and send XML documents and to propagate and receive aware-

ness events. These interfaces are discussed in detail in chapter 6.

5.3.1. CEFX components
The main CEFX components are the concurrency controller (CC), the conflict resol-

ution module (CRM), the awareness controller (AC), the awareness widgets (AW),

the DOM adapter (DA), the CEFX controller (CEFXC) and the network controller

(NC). The CC of the framework is responsible for maintaining the consistency of the

document and uses the NC to transmit and receive editing events to and from remote

sites. The CRM defines the rules that are applied if a conflict occurs. The CC in the

prototype implementation of CEFX, that was developed in this thesis, is implemen-

ted by the OrderingConcurrencyControllerImp1 class. The CRM is implemented

by the DefaultConflictResolutionProviderlmpl class (see chapter 4).

A single-user application is not aware of remote sites. In order to give a user a feed-

back of what other users are doing, so called awareness mechanisms need to be

integrated into the application. Awareness mechanisms can also be used to alert users

to conflicts that cannot be resolved automatically. For this integration, the framework

offers methods to register own listeners and awareness widgets that get notified by

the framework of events from remote sites. These listeners are registered with the

AC. The AC is responsible for receiving and dispatching events from and to the ap-

plication and remote sites. The events can for example contain information on mouse

movements, key stroke events or other control events that need to be made visual, in

some way or other, to the user.
The DA connects an application with CEFX. It is responsible for creating operations

on the basis of application events, for example user actions, and delegates the execu-

tion of the operations to the CEFX controller. Three different ways of integrating the

DA into an application exist. The DA can, for example, be directly connected to the

single-user application's internal data model (the DOM). This is achieved, in the pro-

totype implementation of this thesis, by using the aspect oriented programming

approach. In other cases where the application provides a DOM API, the DA can be

154

connected with the application through a DOM/DOM translation layer that forwards

the application's data model events to the DA and vice versa. Applications that do not

use the DOM internally for the manipulation of their data and do not provide a DOM

API can also be extended with CEFX. In that case the approach to connect the DA

with the application is similar to the transparent adaptation approach used in

CoWord. This requires the implementation of a DOM/API translation layer which

translates application and runtime (OS) events into DOM events and vice versa.

The CEFXC is responsible for managing the client's session and delegates editing

and awareness events to the corresponding modules of the framework such as the

CC, the AC or the NC.

Figure 5.2 shows an overview of the main CEFX framework components and their

interrelation.

Application I
DOM API

* DOM/DOM Translation

Third -pa
(AW)

Extension II Awareness
A Controller

Awareness
Extension Point Widget

(AW)

Single-User Application

M r7f 4 Internal
DOM

Translation Lay

Application
API

DOM

CEFX I
Controller
(CEFXC) Conflict

Resolution
$ Module

(CRM)

r
Cr

Controller Conter
(CC)

cc
Extension

CRM ,
Extension)

os
API

CEFX Framework

Figure 5.2: Main CEFX components

An application can use the default framework components such as av, areness widgets

or provide its own and register them with the framework. This is possible due to the

plug-in architecture of CEFX. Each of the main components sho" n in figure 5.2 are

plug-ins that can be configured using the so called extension points mechanism. '['he

framework offers extension points to extend or replace awareness ý idgets. the con-

155

currency controller and conflict resolution module implementations or the network

controller.
The following section discusses the plug-in mechanism used in CEFX for the flex-

ible extension of the framework. Next the tasks of the DOM adapter, the awareness

controller and widgets, the network controller and the CEFX controller components

are further discussed.

5.3.1.1. The Plug-in Mechanism

Enhancing single-user applications with collaborative functionality or developing

new real-time collaborative applications is difficult and time consuming. Even if an

application is developed using a collaborative editing framework a lot of coding is

necessary. If the framework does not fulfil all requirements of the application, adjust-

ments and changes to the source code are indispensable. With a framework that is

hard to change, the application is tied to its consistency model and adjustments can

become expensive and time consuming.
In order to support as many different application types as possible, the consistency

maintenance algorithm has to be very flexible, for example, in the selection of con-

flict resolution strategies. Depending on the application type, the required strategies

may vary. For example, in one case a priority based conflict resolution strategy,

where the user with the highest priority wins makes sense. In other cases, a multi-

versioning approach would be better. Other application scenarios may require an ar-

bitration scheme as in dARB (Ionescu and Marsic 2000) or let the users solve the

conflict.
A flexibility in the implementation of the framework components is new to collabor-

ation frameworks and made possible by the plug-in mechanism of CEFX.

Plug-ins are software extensions that are implemented in compliance to a certain

software interface (a contract defining how something is to be implemented). This al-

lows a plug-in to be used by another software without knowing any implementation

details "of the plug-in. The other software, in this case CEFX, only knows the inter-

face of the used plug-in. So called extension points are used to inform CEFX about

which plug-ins should be used. An extension point is a contract which consists of an

extension point declaration (defined in an XML file) and a Java interface definition

(Java programming language source code).

156

CEFX defines extension points for the following framework components:

" Concurrency controller

" Awareness controller

" Awareness widgets

" Conflict resolution module

" Network controller

The extension points are declared in the CEFX configuration XML file (cefx. xml)

which is structured as defined by the CEFX extensions XML Schema (cefxexten-

sions. xsd). Figure 5.3 depicts the extensions XML Schema definition.

c[rx -

:, i

-

" . -,..... k, n^. b.. e lO
ýwýwwsrMMý

ý
AwýrýýKý

ý1 rJ ýro"D4ýf

u

0I "D Iý

COf11ýCWNCY111Eý111M111
tIMý

8 MGM

1eti. ýlwn'ý1 yE.
twewnOmWeýý:

Figure 5.3: CEFX extensions XML Schema

The extension points declaration for CEFX is separated into two parts. The first part

157

is the extension point declaration itself (complex type ExtensionPoint), the second

part is the activation declaration (complex type Activation). The extension point
declaration part of the CEFX configuration defines which plug-ins exist. In order to

make CEFX use a certain plug-in extension, the extension has to be activated in the

activation declaration part of the CEFX configuration. This allows it to declare a set

of extension plug-ins and switch between configurations by changing the set of act-
ive plug-ins. Each extension point has an id attribute that allows to identify the

activated extensions.

ConcurrencyController extension

The Concurrencycontroller element has a class attribute pointing to the name of
the plug-in class that should be instantiated by CEFX as concurrency controller. The

class must implement the Concurrencycontroller interface.

ConflictResolutionModule extension

The ConflictResoiutionModule element has a class attribute pointing to the name

of the plug-in class that should be instantiated by CEFX as the ConflictResolu-

tionProvider. The given class must implement the ConflictxesolutionProvider
interface.

NetworkController extension

The NetworkController element has a class attribute pointing to the name of the

plug-in class that should be instantiated by CEFX as the NetworkController. The

given class must implement the NetworkController interface.

Awareness extension

The AwarenessExtension element has an id attribute and an optional name attribute.
The id attribute contains a unique identifier. The name attribute contains the name of

the awareness extension. This is used to make it more clear to the user what kind of

awareness mechanism is supported by this awareness extension. Each awareness ex-

tension has a corresponding awareness widget declaration and an optional awareness

controller declaration. The Awarenesswidget element has a class attribute and one or

more AwarenessEvent elements. The class attribute points to the name of the plug-in

158

class that should be instantiated by CEFX as AwarenessWidget. The class must im-

plement the AwarenessWidget interface. The AwarenessEvent element contains a

text that identifies the type of event that this awareness widget will listen to. Aware-

ness events are, for example, mouse selection events, mouse movement events or key

stroke events. Whenever one of the here defined events occurs, the corresponding

awareness widget will be notified by CEFX. The Awarenesscontroller element has

a class attribute that points to the name of the plug-in class that should be instantiated

by CEFX as the AwarenessController. The given class must implement the Aware-

nessController interface.

After defining the used plug-in extensions via the extension point declaration and ac-

tivating them in the CEFX configuration, the framework will load the corresponding

plug-in classes upon start of CEFX. The loading and initialising of the plug-ins is

discussed in detail in chapter 6.

5.3.1.2. The DOM Adapter

The Document Object Model (DOM)33 is a common interface to the XML model

tree. Applications that allow editing of XML documents commonly use the DOM

API in order to manipulate their data model. Implementations of DOM exist for

nearly all modem programming languages and operating systems. When developing

a framework that allows enhancement of existing XML applications with collaborat-
ive functionality, it makes sense to use this common interface as an entry point to

these applications.
The DOM adapter (DA) is integrated into an application and connects it with CEFX

by making use of the applications DOM. This is achieved either by directly connect-
ing the DA with the applications DOM, or by manipulating the application's data

model through a provided DOM API. If the application does not use XML or the

DOM and does not provide a DOM API, the DA can still be connected to the applic-

ation by using a similar technique as in the transparent adaptation approach of
CoWord.

s' W3C Document Object Model. Platform- and language-independent standard object model.
http: //www. w3. org/DONV, retrieved October 30,2007

159

A shared data model

In this work's prototype implementation of a collaborative SVG editing application,

the application is extended by directly connecting the DA to the applications DOM

(further discussed in chapter 7). In that case the single-user application and the DA

share the same data model (represented by a org. w3c . dom. Document object). The

org. w3c. dom. Document interface defined by the W3C DOM API specification

provides methods for accessing and manipulating the XML document's content.

When the XML document is loaded and the Document object is created, both the ap-

plication and the DA retrieve a reference to it. The DA then passes the reference to

the ConcurrencyController component of CEFX.

Whenever the document is manipulated by the application as a result of a user action,

the DA is notified and creates a corresponding operation. The operation is then

handed over to the CEFXController which then calls the corresponding executeop-

eration (...) method of the ConcurrencyController (see chapter 4).

When a remote operation arrives at a site, it is executed on the shared Document ob-

ject directly by the Concurrencycontroller. The DA thereafter notifies the

application of a change of the data model so the application can repaint its view and

present the changes to the user.

DOM/DOM translation

Some applications may not use the DOM internally but provide a DOM API as an in-

terface for other application to their data model. This is, for example, the case for a

number of web browsers such as Microsoft Internet Explorer and FireFox. The

provided DOM API usually allows to register DOM listeners that are notified if the

document's data is changed, for example by a user action. They also allow other ap-

plications to access their data model through the provided DOM API and manipulate

it. In order to connect such an application with CEFX, a DOM/DOM translation lay-

er (see figure 5.2) needs to be implemented, which registers itself as listener with the

applications DOM and forwards DOM events to the DA. The DA then shares a or-

g. w3c. dom. Document object with that translation layer and any changes made to the

applications document are also executed on the DA and the translation layers docu-

ment. When remote operations are executed on the shared document, the translation

160

layer translates those manipulations into calls to the application's DOM API and re-

produces the changes there. In this way the documents are synchronised by the

DOM/DOM translation layer without a direct connection of CEFX and the applica-

tion.

DOM/API translation

As mentioned before, it is also possible to use CEFX with applications that do not

use the DOM internally and do not provide a DOM API. In this case the application

that is to be extended must provide another API that allows manipulation of the ap-

plication's data model. Microsoft Word for example provides such an API. In order

to connect such an application with CEFX, a DOM/API translation layer (see figure

5.2) would have to be implemented that - similarly to the above approach - shares a

data model with the DA but this time intercepts application and operating system

events such as mouse movements and key strokes and translates them to DOM ma-

nipulation actions on the shared document. It may be very elaborate to do so, but it is

feasible as similar approaches such as the CoWord approach show. The difference to

CoWord here is that the events are not translated into operations for the operational

transformation layer but into operations that manipulate an XML document. The

XML document that is used in such a case should either model the extended applica-

tions data model as close as possible or be a document that allows the translation

layer to easily translate the remote operations into calls to the application's API.

5.3.1.3. The CEFX Controller

The CEFxcontroller takes care of the session handling and the server connection.

When a document is opened, the CEFxController checks, if the client is already

connected to a session with the server. If no session exists, the controller connects

the client to the server and opens a new session.

A document that is opened for the first time in a collaborative editing session, is

opened locally by the CEFXController and then send to the server. The server then

stores this document. The next time the document is opened, the CEFXController

loads it from the server instead of the local file system.

The CEFXController is created in the initialisation phase of the DA and loads all

plug-ins - as configured in the CEFX configuration file - and initialises them. This is

161

done with the help of the ExtensionRegistry which is further discussed in chapter
6. The controller has a connection to every component of the system. It is responsible
for delegating the execution of operations to the concurrency controller and allows

retrieval of a reference to each of the other framework components. The CEFXcon-

troller implements the OperationExecutor interface (see chapter 4) and thus acts,

from the perspective of the concurrency controller, as a client.

5.3.1.4. The Network Controller

The main task of the Networkcontroller is to connect the client to the server and to

the other clients and propagate and receive operations. When it receives a remote op-

eration it delegates it to the CEFXController which then further processes the

operation. The NetworkController provides certain network protocol interfaces that

allow other clients to connect to it. The prototype implementation of the CEFX Net-

workController uses the Java Remote Method Protocol (JRMP). This allows

connecting the clients (and the server) via a TCP/IP based network. JRMP is a pro-

tocol often used in professional applications.

5.3.1.5. The Awareness Controller

Awareness mechanisms are an important part of a collaborative application. They

provide a user with information on other user's actions within a collaboration session.

CEFX therefore supports the integration of awareness mechanisms into the frame-

work. The AwarenessController component is responsible for delegating editing

events such as mouse movements and key strokes, that a user might be interested in,

to the corresponding awareness widgets. Awareness widgets are registered with the

AwarenessController and provide certain methods that allow the AwarenessCon-

troller to receive information on the kind of events each awareness widget is

interested in. For example, an awareness widget that informs the user on mouse

events of other users within the editing context is informed by the Awarenesscon-

troller of such events. The AwarenessController receives those events from the

other clients and is responsible for propagating such events to all other clients within

a session. The prototype implementation of CEFX supports two types of events:

mouse selection and operation execution. Whenever a user selects an object within

the document, or executes an operation, the AwarenessController creates the cor-

162

responding awareness event and propagates it to the other clients. When another cli-

ent receives such an event, the corresponding awareness widget is notified. The

awareness widget then visualises the event.

5.4. Conclusions

The work in this thesis successfully employed, for the first time, the flexible plug-in

concept in a collaborative editing framework whereby each component can be easily

extended or replaced with a new implementation. This novel technique resulting

from this research will potentially enable more efficient adaptation of the framework

to specific application requirements.

A new method of using the Document Object Model (DOM) as a standard interface

for the integration of collaboration functionality into an application was developed

and successfully implemented as described in chapter 6.

This simplified the coding and potentially reduces the development time compared

with other approaches. CEFX will provide a simple-to-use application programmer's

interface (API) that enables the development of new collaborative XML editing ap-

plications or the extension of existing single-user applications as discussed in chapter

7.

163

Chapter 6. Implementation of the CEFX system

The CEFX implementation is split into two parts: the implementation of the client

part (client) and the server part (server). The client is used when developing a new

collaborative real-time editing application or when extending an existing single-user

application. The server is an application of its own and runs independent of the cli-

ent. It can either be started on a separate computer or run in parallel to a client on the

same computer.

In order to connect the clients and the server with each other, the Java Remote Meth-

od Invocation (RMI) API is used. Java RMI, is a Java application programming
interface for performing the object equivalent of remote procedure calls. RMI will

not be further discussed in this thesis, as it is a common method for implementing re-

mote procedure calls"

The client and the server part of the CEFX software were developed using the Ec-

lipsess Integrated Development Environment (IDE) and the Java programming
language.

The main objectives when designing the Collaborative Editing Framework for XML

(CEFX) were to:

" provide an easy to use application programmer's interface (API) allowing an ap-

plication programmer to build new collaborative real-time editing applications

without having to care about synchronisation and collaboration issues.

" provide an easy to use integration mechanisms allowing the easy extension of

existing single-user editing applications.

" provide a flexible software architecture allowing the easy extension of CEFX

with new functionality or concurrency control mechanisms.

" develop a platform independent software that can be used on various operating

systems.

" achieve a good overall system performance that allows the user to work with a

" For more information on RMI please refer to http: //en. wikipedia. org/wiki/Java_RMI, retrieved Octo-

ber 30,2007
" For more information on Eclipse, see http: /www. eclipse. org, retrieved October 30,2007

164

CEFX based application as if it were a single-user application.

The following chapters discuss the software structure of CEFX, that is the imple-

mentation of the server and the client part of the framework, the different source

packages and their contained components.

6.1. CEFX Client

The client part of CEFX is structured into several Java packages. The base package is

the de. hdm. cefx package containing the CE 'XController interface and its imple-

menting class, the CEFxControllerImpl class. Below this package, the following

packages exist:

" concurrency

" concurreny. operations

" dom. adapter

" extension

" registry

" awareness

" awareness. event

" client

" client. net

" util

In the following sections each of these packages and their contained classes are dis-

cussed. The concurrency and concurrency. operations packages contain all

classes relevant to the concurrency control mechanism which were discussed in

chapter 4.

165

6.1.1. The CEFX client base package

The de. hdm. cefx package contains the classes as shown in figure 6.1.

«Irre foot=

CEFXConb-o ler

G7Cocýmer!; Jb'e_.
r 'g

' 3e'ýýoncuýencyGor, rrotieý: Conourrerc; "r _--
- 'etNetwo Gort ollerj Netwo*Cantrc'
- e<ecuteOperat: onjOperation, boolea,

- eecuteP. e"n cteOperdtroniOpealion. ..

Opeat oýE er.. r
C EFXC ontrol lerlmpl

Figure 6.1: Classes in Java package de. hdm. cefx

The CEFXController interface is implemented by the CEFXControllerImpl class

and defines the following methods:

" boolean executeOperation(Operation operation);

" void executeRemoteOperation(Operation operation);

" CEFXClient getClientO;

" ConcurrencyController getConcurrencyController();

" NetworkController getNetworkController();

" AwarenessController getAwarenessController();

" void notifyOfNewClientInSession(CEFXClient client);

" Document loadDocument(Object documentFactory, String documen-

tURI);

The method executeoperation(Operation operation) is called by the CEFX-

DOMAdapter after the user issued a change of the document in the application. The

CEFXDOMAdapter creates an operation object and passes it on to the CEFXControi-

166

ler which in turn delegates the execution of the local operation to the Concurrency-

Controller.

Remote operations are received by the NetworkController and passed to the CEFX-

Controller via the executeRemoteOperation(...) method. The CEFxController

delegates the execution of the remote operation to the concurrencycontroller and

notifies the CEFXDOMAdapter to refresh the application's user interface in order to

visualise the changes to the user.

The CEFXController owns a CEFXClient object and the method getClient () is

used by the NetworkController to retrieve this object. The CEFXClient object con-

tains information necessary for connecting to the server and opening incoming

connection ports (see chapter 6.1.1.3 and 6.1.1.4 for details).

The CEFxController initialises - next to the CEFXClient object - the Concurren-

cyController including the ConflictResolutionProvider, the

NetworkController and the AwarenessController. References to these compon-

ents can be retrieved by using the methods getConcurrencyController (,

getNetworkController() and get AwarenessController().

The method notifyOfNewClientInSession (CEFXClient client) is called by the

NetworkController when a new client joins an open session. The CEFXController

then adds the new client ID to the concurrencycontroller's state vector so that the

new client is taken into consideration in the concurrency control. After this the state

vector and the history buffer are cleared in order have the same default state at all

editing sites.

It may be noticed that during the time when a new client joins an existing editing ses-

sion and retrieves the current document from the server, no editing should take place.

This is to make sure that each client and the server have the same initial document

state when starting the concurrent editing session again. In order to prevent users

from editing while a new client joins, the users should be notified. Additionally the

user actions should be either blocked for that period of time or the actions should be

buffered, so that they can be executed automatically after the joining sequence is

completed. In the CEFX proof of concept prototype implementation it was not neces-

sary to include such mechanisms. This is an open issue for future CEFX

implementations.

167

6.1.1.1. Loading a document and initialising an editing session

Each client has a local document repository where documents are stored that can be

edited collaboratively. The repository in this case is a folder called cEFxRepository

on the local hard drive. If a document is contained in this repository and is opened by

the user for editing purposes, the method loadDocument (...) of the CEFXControl-

ler is called by the CEFXDOMAdapter. The method's document Factory argument (of

the type Object) is a reference to the editing applications DOM factory object. This

can be an object of any type that implements the org. w3c. dom. DOMlmplementation

interface or has a method createDocument(string urn) returning a org. w3c. -

dom. Document object. The argument documentuRZ (of the type string) is a path to

the document in the local document repository.

ad CEFXController loadDocument

upload the document to
the server

sessic^ areaucr
sý xessft, l'

connect to the CEFX
create the document from

server creating a the local repository
session -

: 1¬s:

load the document from
the server

create the document
store the document in the

using the ohue-ct
temporary document

applications DOM a pplications
repository location implementation factory

pass a reference to the
reset the state vector of the document to the

concurrency controller ConCUrrMCy controller

e tear tM history butler of the

Concurrency controller

0

"etý'ý tre ': CL--e^t

Figure 6.2: Execution step of the IoadDocument(...) method

168

The steps shown in figure 6.2 are executed by the CEFXController when the load-

Document(...) method is called.

First the CEFxcontroller connects to the server in order to create a new or to join

an existing editing session. If the server already manages a session for the document,

or if a new session can be created, the server returns a session object to the client and

the CEFXController is notified that the connection has been successfully estab-

lished. In this case the CEFXController will load the document from the server and

then store it in a local temporary repository. If a connection could not be established

and no session object was returned from the server this means that the server does

not recognise the requested document and it has to be uploaded to the server in the

first place.

The server requires a copy of the document in order to process it and add UUIDs to

each element node. After uploading the document, the CEFXController tries to con-

nect to the server again. This time connecting will succeed and the document can be

loaded from the server. The next step is to create a org. w3c . dom. Document object

by using the application's document factory object. Once the document object has

been created, a reference to it is passed to the ConcurrencyController implementa-

tion of CEFX. Then the ConcurrencyController is prepared for collaborative

editing by resetting the state vector and clearing the history buffer. The last step is to

return the document object to the CEFXDOMAdapter. The CEFXDOMAdapter will then

pass it to the application.

Figure 6.3 schematically depicts a successful session initialisation sequence. The

calls (shown in the sequence diagram in figure 6.3) between the NetworkControl-

1er and the CEFXServer are RMI network calls involving a number of other objects

that are not shown here for simplicity reasons. It is worth mentioning that the docu-

ment object from the server site is created by using the document factory provided by

the standard Java 1.5 runtime environment (class j avax . xml . parsers . Document-

BuilderFactory). At the client site, the application's document factory is used.

169

Arclý; ýn: rs CEýýC"'c! 4dtact CEF+"^rt" II. : ^. x"-frq: crt": llr Nft. . cr: "cur : Ec ýSetif"
Coa. Tercc, a: ",

Clifr: C. ccli; Aa: ^

aes-" xr-ea - st-g.

Sfa. c " x^-i. ý Sriýgi

; a^'ea wcaMLi ;

; Pr. l au

"fiitEt.: E : E..: '

:G Tf^

Figure 6.3: Sequence of calls when successfully initialising a editing

session

Each application for a specific XML document type, for example SVG, DocBook or

X3D might provide its own XML document object implementation. This is done to

fulfil certain requirements that are necessary in order to, for example, render the

XML document as graphic (as in the case of the Batik SVG library). However, the

implemented document object - including its containing element nodes - must con-

form to the W3C DOM API. That is, the applications document object must

implement the interfaces defined by the standard W3C DOM API. This allows it to

be processed using the standard DOM methods. In order to integrate the client part of

CEFX seamlessly into an editing application, it should be possible to share the docu-

ment object with it in order to execute remote operations directly on the application's

data model (in the case of a transparent adaptation).

170

As mentioned before, the server does not have a reference to the application's docu-

ment factory. Thus the standard W3C DOM API is used to load and process an XML

document at the server site, keeping the server independent of the XML editing ap-

plication.

6.1.1.2. Initialisation of the CEFXController

When the CEFXController is initialised, it in turn initialises all other required

framework components except for the CEFXDOMAdapter (which is responsible for
initialising the CEFXController). First the CEFXController initialises the Exten-

sionRegistry. The ExtensionRegistry contains all information required for the

initialisation of the other plug-in components such as the AwarenessController and

AwarenessWidget components, the NetworkController, the ConcurrencyCon-

troller and the ConflictResolutionModule. In order to initialise, for example,
the AwarenessController, the CEFXController retrieves an AwarenessExtension

configuration object from the ExtensionRegistry. From this AwarenessExtension

configuration object the class name of the configured awareness class is retrieved.
The next step is to create an object of this class by using the Java class loading func-

tionality as shown in the below code example:

final String acClazz =

acConfiguration. getAwarenessController(). getClazz(;

AwarenessController ac = null;

Class acClass = Class. forName(acClazz);

ac = (AwarenessController) acClass. newInstance(;

The acconfiguration object in the above code example represents the mentioned
AwarenessExtension object.

The same mechanism is used for the initialisation of each of the other framework

components. Additionally the mentioned CEFXClient object is created. The CEFx-

Client object, the ExtensionRegistry and the configuration classes are discussed

in detail later.

171

6.1.2. The dom. adapter package

The dom. adapter package contains the CEFXDOMAdapter interface and its imple-

menting class the CEFXDOMAdapterzmpl as shown in figure 6.4.

- _ýteDocumeýQS; nng Documeý:

- Documert_createElemenNSnng; E-eTe-

- Decument_createAttrbute(Stnng; Atr
- Document createTextNodejStn'ng 7-

- E. em e,. t aetAttrbuteNode1Attr Ati'

- E; ement_ setAt? rbute, Eleeent. Stung

- Element setAttrbuteNS, Element Stung
_. ,

_.
..,

- Node_appena0hild4Node Node, Mode

" Node remeveCfildtNode Abele %r;: e
" Nede ýnseß&etore(Node. Node

efeshj) void

- setRenderGontextiOblect" .c
" getCunentDocument1 Doc, Te-:
- s; oseSessto. i1 void
- lo: oA etNode: boolear

- u-. 1c iNodejNode. boolea-

- . -o;; aboratiorReadvj'ý bc_, ea,
- ý_, "cllabo e;; or Per dir, bccý ea ,c..

CEFXDOMAdapbrlmpl

Figure 6.4: Package dom. adapter classes

The CEFXDOMAdapter interface defines a set of methods that correspond to the W3C

DOM API methods for manipulating the content of an XML document. These meth-

ods are:

" Element Document createElement(String tagName);

" Attr Document createAttribute(String name);

" Text Document createTextNode(String data);

" Attr Element setAttributeNode(Attr newAttr);

" void Element setAttribute(Element e, String attr, String value);

" void Element setAttributeNS(Element element, String

nameSpaceURl, String qualifiedName, String attributeValue);

" Node Node_appendChild(Node parent, Node newChild);

172

" Node Node_removeChild(Node parent, Node child);

" Node Node insertBefore(Node parent, Node currentChild, Node old-

Child);

" Document createDocument(String uri);

These methods are used basically in the same way as the W3C DOM API is used

when working with an XML document. This makes it easy for an application de-

veloper being familiar with the DOM API to learn how to use the CEFXDOMAdapter

interface methods. The method createDocument (...) (as explained in chapter

6.1.1.1) is used to instantiate a org. w3c. dom. Document object. In order to modify

the document the other listed methods can be used. For example the method

Node appendChild (...) is called to append a node to another existing node within

the document. The CEFXDOMAdapter will in this case take care that the corresponding

CEFX operation is created and passes it on to the CEFxController.

The other methods of the CEFxDOMAdapter interface are used, amongst other things,

for initialising the framework and the editing session, checking the framework status

and for the CEFX locking feature allowing to lock certain parts of a document.

" void setDocumentFactory(Object factory);

" void setRenderContext(Object renderContext);

" void refresh();

" void setCollaborationReady(boolean readyState);

" void closeSession();

" boolean lockNode(Node node);

" boolean unlockNode(Node node);

The method set Document Factory(...) is important for the framework initialisa-

tion and is used to pass a reference of the application's document factory to CEFX.

The render context (passed to the setRenderContext(Object renderContext)

method) of an application is responsible for the visualisation (the rendering) of the

XML document to the screen. In most Java based applications this is a class derived

from j avax. swing. JComponent or Java. awt. Component and implements a re-

paint () method. In order to be compatible with this implementation of CEFX, the

class representing the application's render context can be of any type but must

173

provide a repaint () method. The CEFXDOMAdapter S refresh () method is called
by the CEFXController when a remote operation is executed and the application

should visualise the change to the user. The CEFXDOMAdapter in turn calls the re-

paint () method of the application's render context. If an application does not

provide any such kind of render context, it has to take care of the visualisation of
document changes by itself.

The method setCollaborationReady (...) is used to set the state of the framework

to either "ready for collaboration" or "not ready for collaboration". The framework is

set to "ready for collaboration" when all necessary initialisation has been performed

and the collaboration can begin.

The method ciosesession () is used to notify the framework that the client is leav-

ing an editing session. In that case the CEFXDOMAdapter will close any open

connections to the server and the other clients and sets the framework state to "not

ready for collaboration". Thenceforth all incoming remote operations are ignored.

This method is usually called when the editing application is closed.

6.1.2.1. Locking of nodes

The method lock (Node node) is used to lock a certain document node and thus pre-

vent other users from editing that node until the node is unlocked again by using the

unlock (Node node) method. Locking of nodes is realized by marking a node as

locked by a certain client. The framework checks each node for this "lock marker"

and prevents changing or deleting a node that has been marked as locked by another

client other than the one trying to execute an operation on it. This checking is done at

each client site whenever the client tries to modify the document using one of the

above CEFXDOMAdapter's methods corresponding to the DOM API. In order to mark

a node as locked, the CEFXDOMAdapter creates an update operation that adds the at-

tribute CEMOCKED to the node that is to be locked. The CEFXLOCKED attribute carries

the client ID of the locking client as value. For example if the client with the ID=l

locks a node the attribute cEFxLOCKED=l will be added to the node.

Unlocking of a node can only be performed by the client that locked it, all other cli-

ents would not be able to modify the CEFXLOCKED attribute. As mentioned above, the

174

unlock (Node node) method is used for this purpose. This method removes the cE-

FXLOCKED attribute from the specified node and thus readmits modifications from any

other client within the editing session.

6.1.3. The client package

The client package contains the CEFXClient interface and its implementing class CE-

FXClientlmpl.

.Ir te'f80Es

Server.. CEFXClient

y^B: A'dýIBI' S

- fiert,;

Figure 6.5: Client package classes

The CEFxciient is used to identify each client within an editing session and provide

all other clients and the server with the information that is necessary for connecting

to it. A CEFXC1ient object is transmitted over the network. Thus it must implement

the java. io. Serial izable`' interface, allowing it to serialize a client object into a

byte stream, ready for network transport.

The CEFXClient interface defines the following methods:

" String getConnectionString();

" String getConnectionName(;

" String getName(;

" String getPort();

16 Serialization of objects is a standard feature of the Java runtime. In order to enable serialization, each

serializable class has to be marked as such by implementing the java. io. Serializable interface.

175

" String getHostName();

" String getlD();

The method getconnectionstring () returns a String object containing a Unified

Resource Identifier (URI). The URIS' is a compact string of characters used to identi-

fy or name a resource over a network. The CEFXClient URI consists of the

hostname, the port and the connection name. Below is a typical example of this:

//10.21.0.31: 3451/CEFXClient

A hostname is the unique name by which a network attached device is known on a

network. In this case the hostname can either be an internet hostname as defined by

the Domain Name System58 (DNS) or an IP address.

The port in this case represents a TCP/IP port on the clients machine and is separated
from the hostname by a colon in the URI.

The connection name is the name of the client object as it is registered with the RMI

registry service. In this case a client is registered as CEFXclient with the RMI re-

gistry. A server is registered as CEFxServer.

The connection string is used by a client or the server to connect via the network to

the other clients. The methods getconnectionName (), getPort () and getHost-

Name () are used to retrieve the information as indicated by the methods' names. The

method getName () returns a String object containing the name of the client as it is

defined at each client site. The first client in an editing session for example is named

client, the second client is called Client2 and so on. The method getlD () returns

a String object containing the unique id of the client. A clients name, id, hostname,

port and connection name are configured in the CEFX network properties file when

installing CEFX on a client or server computer and are retrieved from it when the

CEFXClient is initialised. The content of the network property file and the installa-

tion of CEFX is further explained in chapter 7.3.

For a definition of URI see: http: //en. wikipedia. org/wiki/URI, retrieved October 30,2007
For more information on DNS see: http: //en. wikipedia. org/wiki/Domain_Name_System , retrieved

October 30,2007

176

6.1.4. The client. net package

The client. net package contains all classes and interfaces that are used for hand-

ling the networking part of the CEFX client.

The NetworkControllerlmpl class implements the NetworkController interface.

lt is composed of an OutgoingClientConnectionHandler, an OutgoingServer-

ConnectionHandler and a Clientconnection. Additionally it is responsible for the

client side session handling and thus owns a CEFXSession object (implemented by

the class cEFXsessionzmpl), which is retrieved from the server at the beginning of a

session. Figure 6.6 shows the classes of the client. net package.

Ahmm*

ChentConnecbwilmpl

=-rc llr

.. rt. Aeoe.

cormecfiSv g bocleaý.

loadOocumeý. r. 5: ýý g Downier.;

uplvaODocumecf&ocumeý:. Sfrrng. bocýea-

orocagateOperatidnjOperatldnr wid

net, f, -OfMewUrenM^. 52SSrmiCEFXGrMt. .,,.

es ecufeßanateOpeýatian(Operatronl rom

ýe"'EF. r^cc!. plle' EFxrpnbt, //en ro'd

crcagate4,. areý. ec-E. e" 4:. a eýn: Ever ý:

av; are': e>zE: ems. f. ý.: a-eý. e:: Eýeý. r ýcc

a i^t! 'fý0lý

GiMfCMQ. 000.1

-e ec, fe -te a: o xe, a. c ... o

N. Iwo. rcawaI.. rnpl

dýfnt_-

OulyanyC hantConnecbonHSnale`

CEFX s.... on mpl

mom

Figure 6.6: Classes of the client. net package

The OutgoingClientConnectionHandler is responsible for connecting to the other

clients in a session and calling their corresponding client interface methods (using

RMI). For example if the client executed an operation, the out go i nqf, i; --rt conne---

tionHandler will connect to each other client in the session and call the

executeOperation(Operation o) method of it. The Out goinqsFrvý rý'ýýnnec-

tionHandler is responsible for connecting to the server and propagating operations

to it. The clientconnection interface is implemented by the ci ieni_coýn111-ot ion-

177

imps class and defines the methods that are provided to the other clients and the serv-

er. In the following, the existing interface methods of the client. net package are
discussed in detail.

6.1.4.1. The NetworkController interface

The NetworkController interface defines "outgoing" and "incoming" methods.
"Outgoing" methods are those methods used by the CEFxcontroller in order to

send information to other clients or the server. "Incoming" methods are methods that

are indirectly called by either another client or the server. They are called indirectly

because all calls to a client are invoked on the Clientconnection interface which in

turn calls the NetworkController methods. The "outgoing" methods are:

" boolean connect(String documentURl);

" Document loadDocument(String documentURl);

" boolean uploadDocument(Document doc, String documentURl);

" void propagateOperation(Operation operation);

" void propagateAwarenessEvent(AwarenessEvent event);

The method connect(String documentURl) is called by the CEFXController

when the client wants to open or join a document editing session. The outgoing-

serve rConnectionHandler then uses the java. rmi. Naming interface to lookup the

server interface and open a connection to it using the server connection URI. The

server connection URI identifies the server resource in the networkS9. If the connec-

tion to the server was established, the NetworkController retrieves a

ServerConnection object from the OutgoingServerConnectionHandler and calls

its connect (CEFXClient client, String documentURl) method.

In order to retrieve a document from the server or upload a document to it, the meth-

ods loadDocument(...) and uploadDocument(...) are used by the

CEFXController. When calling these methods, the NetworkController calls the

corresponding methods of the ServerConnection interface (discussed in chapter

6.2.2).

s9 For more information on RMI see: http: //java. sun. comfj2se/1.5.0/docs/guide/rmi/index. htmi , retrieved

October 30,2007

178

In order to propagate operations or awareness events, the NetworkController inter-

face defines the methods propagateoperation (...) and

propagateAwarenessEvent (...) .
Operations are propagated to both, the server and

all clients in a session. Awareness events are only propagated to the clients. The

propagation of operations and awareness events to the clients is handled by the out-

goingClientConnectionHandler class. The propagation of operations to the server

is handled by the outgoingServerConnectionHandler class. The "incoming"

methods of the NetworkController interface are:

" void notifyOfNewClientInSession(CEFXClient client);

" void executeRemoteOperation(Operation operation);

" void awarenessEvent(AwarenessEvent event);

These methods correspond to the methods defined by the Clientconnection inter-

face. The ClientConnection only delegates incoming calls to the

NetworkController and thus it is only briefly discussed here.

The method notifyOfNewClientInSession (CEFXClient client) is called on the

clientconnection when a new client has joined the session. The Clientconnec-

tion in turn calls the notifyOfNewClientInSession(CEFXClient client)

method of the NetworkController. The NetworkController then notifies the CE-

Fxcontroller of the new joining client and adds the client to the session represented

by the CEFXsession object owned by the NetworkController. The last step is to in-

form the outgoing Client Connection Handler of the new client. The

outgoingClientConnectionHandler stores a reference to each client's ClientCon-

nection interface and uses the j ava . rmi . Naming interface to lookup the remote

interface (clientconnection) of the new joined client. As mentioned before, the

CEFxclient interface (provided as argument) contains all information necessary for

a RMI lookup.

The method executeRemoteoperation(Operation operation) of the Network-

Controller is called by the ClientConnection when another client calls its

executeOperation(Operation operation) method. The NetworkController

delegates the call to the CEFxcontroller.

179

When the method awarenessEvent (AwarenessEvent event) of the ClientCon-

nection interface is called, the call is delegated to the corresponding method of the

NetworkController. The NetworkController in turn delegates the call to the

AwarenessController.

The last method of the NetworkController interface is:

0 void setCEFXController(CEFXController controller);

This method is called, when the CEFxcontroller initialises the Networkcontroi-

ter and is used to provide it with a reference to the CEEXcontroller.

6.1.4.2. The CEFXSession interface

A CEFXSession represents a concurrent editing session and contains information on

the different clients and the document that is edited. A CEFXSession object is created

by the server and transmitted over the network to all clients taking part in the editing

session. Each client thereby retrieves a copy of the server's CEFXSession object

when it connects to the server (discussed in chapter 6.2). The CEFXSession interface

is implemented by the CEFxsessionlmpl class and defines the following methods:

" void addClient(CEFXClient client);

" String getDocumentID(;

" HashMap<String, CEFXClient> getClientMap();

The method addClient (CEFXClient client) is called by the server when a client

connects to it. It adds the new client to the session's map of clients. The map of cli-

ents (clientMap) contains the name and a CEFXClient object identifying each

client.

The method getDocumentlD () returns the document's URI which is a path to the

document relative to its location in the local document repository. This URI is used

for the identification of a document and thus is called document id in this context.

The server uses this document id to check if a client requests to connect to an exist-

ing session or to a new one.

The method getclientMap () returns the session's map of clients. This method is

180

called by the Networkcontrolier in order to add a new client to its local CEF'xSes-

sion object. This is done in the notify OfNew Client InSession (CEFXClient

client) method of the NetworkController.

6.1.5. The registry and extension packages

As mentioned before, the ExtensionRegistry contains information on the plug-in

components of CEFX. The registry package contains the ExtensionRegistry

class which is initialised by the CEFxcontroller. On initialisation, the Extension-

Registry loads the CEFX configuration XML file (cefx. xml) which contains the

extension points information as discussed in chapter 5.3.1.1. The information in the

CEFX configuration XML file is loaded into a set of Java objects using the Java Ar-

chitecture for XML Binding (JAXB)60. The classes that represent this information are

located in the extension package. These classes were generated using the JAXB

XML Schema parser and class generator on basis of the XML Schema file cefxex-

tension. xsd. The JAXB API provides methods for marshalling (writing Java

objects to an XML file) and unmarshalling (reading Java objects from an XML file).

The ExtensionRegistry unmarshalls the content of the cefx. xml file and provides

the following method to retrieve the required extension point information:

0 Object getExtensionPointConfigurationItem(String

extensionPoint);

This method is used by the CEFXController when it initialises the CEFX plug-in

components. The extensionPoint argument identifies the requested extension point

information. The object that is returned here is - depending on the given extension-

Point argument - of a type of one of the following classes from the extension

package:

" de. hdm. cefx. extension. AwarenessExtension

" de. hdm. cefx. extension. NetworkController

" de. hdm. cefx. extension. ConcurrencyController

" de. hdm. cefx. extension. ConflictResolutionModule

60 For more information on JAXB see: https: //jaxb. devjava. net/. retrieved October 30,2007

181

The AwarenessExtension class contains information on the AwarenessController

plug-in and the Awarenesswidgets. It provides the following methods in order to re-

trieve that information:

0 AwarenessController getAwarenessController();

0 AwarenessWidget getAwarenessWidget0 ;

cd Registry

de hdm. cefx. registry

Exton sioiRegistry

TE'SI: 7 St"iý3= ". s"= -E,! t

- '4ET,.. rE,. TENSION Stir Eat_nsic,

- ,; NCURRENCrCONTRCL EnTENSI ;N Sting = Ccnal? end Er
- CONFLICT RESOLUTION E>TENSIO. N St"ing= -c-fh s, I

d!. hdm. cefx. exten sinn -oaf.
ýeýý. aticr

cc eaF9 c', CEFX
Activation

Objlctfactory

- detE>:. er; ior F'cirt:. Lit- E ^5ý: -_

>=. -.

ým rfIi Plsc li. ticn F. tcoý le

C onfl ic tRe sol ution Mod u le

NetworkControllar ExtensionPOint

ýa, ý'a'ereSSEx1eniiCn t00n CL?! n(. y, '^Ont'Ollf'

AwarenessWid9et AwarlnessExtension ConcurrencyControlkr

Awaren. ssController

Figure 6.7: Classes in the registry and extension packages

The AwarenessContro1ier and the AwarenessWidget classes contain information

on the Java class that should be loaded by CEFX as Awarenesscontrolier or

Awarenesswidget. This information can be retrieved by using their getclazz ()

method. The NetworkController, the ConcurrencyController and the Con-

flictResolutionModule classes from the extension package also provide a

Exton sionRegistry

TE'SI: 7 St"iý3= ". s"= -E,! t

- '4ET,.. rE,. TENSION St'ina Eat_nsic,

- ,; NCURRENCrCONTRCL EnTENSI ;N Sting = Ccnalrenýj Er
- CONFLICT RESOLUTION E>TENSIO. N St"ing= -c-fl, -Aes, I

182

method getClazz () which is used by the CEF'XController in order to instantiate the

corresponding plug-in component. Figure 6.7 depicts the classes from the registry

and the extension packages.

The CEFX class represents the root node of the CEFX configuration. It provides meth-

ods to retrieve the contained extension points and the list of activated plug-in

components which is encapsulated in the Activation class.

If the CEFX configuration XML file does not contain all necessary information, or

does not exist, the ExtensionRegistry creates a default configuration. This is done

by using the methods of the obiectFactory class. The objectFactory class is also

generated by JAXB and provides a set of "create" methods (for example the method

createConcurrencyController ()) that can be used to instantiate objects of the

above classes and fill them with the required information.

6.1.6. The util package

The utii package contains two classes that were developed in order to facilitate us-
ing CEFX for an application programmer (CEFXUtil class) and to clearly separate

the Aspect Oriented Programming (AOP) source code from the Java source code

(Advice class). The two classes are shown in figure 6.8.

CEFXUtil

" i¬t JI r JeFter, C EF. 1C')MAdaCter Crd
+ getCoa. 'r'ertloertrfie'; ý: ýrdý S: 'rrg
+ getCOMAdapte.:, CEFýCOFOAcapter

+ reN"UUIC; OCject Nooe- String

' ? SL: e3: Elererti t; C. 'te9^

" nc tL_"O. e'IO; E Ie'rE" ý["i'd

Advises

- 3ccer3Chilo; Elernert Eler-ert. laooe

" rse^tSetore, Elemert. N`oe, Nooe, rrroe

" "Err-C Veýh I 4OOE t430eý Noce

" t:. tbicýteNS EI¬ rert Strirg St rg. 5 '.

" ietAttei L% t ; Ele^er' St, irg _trird cic

Figure 6.8: Classes in the util package

183

The CEF'XUtil class defines the following static methods:

" void setDOMAdapter(CEFXDOMAdapter adapter);

" CEFXDOMAdapter getDOMAdapter(;

" String getDocumentldentifier(String documentURl);

" String newUUID(Object client, Node node);

" boolean isLocked(Element element);

" String getLockerld(Element element);

The CEFXDOMAdapter uses the method setDOMAdapter(CEFXDOMAdapter adapter)

to provide the CEFxUtii class with a reference to it. The method getDOMAdapter ()

can then be used by other classes to retrieve this reference.

The method getDocumentIdentifier(String documentURI) is a utility method

that returns a client independent URI (as an object of the type string) for a given
document path. The given documentURl argument can thereby contain a full path to

a document file. The resulting URI will contain a relative path to the document start-
ing from the local repository location. This method is used when a client connects to

the server and wants to create or join an editing session for a certain document.

The method newuuiD(Object client, Node node) is used by the CEFXDOMAd-

apter for creating a universally unique identifier (UUID) for a new node that is to be

inserted into the document. The UUID is created using the client (of type object)

and the node (of type Node) argument. A hash code is generated on basis of these ar-

guments and is combined with the current time, the MAC address of the client

computer and a counter. This makes sure that the generated UUID is truly univer-

sally unique".

The method isLocked(Element element) can be used to check if the given ele-

ment node is locked by a client. The method getLockedId(Element element)

returns the ID of the client that locked the given element node, if any.

61 For more information on UUIDs see: http: //en. wikipedia. org/wiki/UUID, retrieved October 30,2007

184

The Advices class defines the following static methods:

" Node appendChild(Element parent, Element child);

" Node insertBefore(Element parent, Node currentChild, Node old-

Child);

" Node removeChild(Node parent, Node child);

" void setAttributeNS(Element parent, String nameSpace, String at-

tribute, String value);

" void setAttribute(Element parent, String attribute, String

value);

In each of these methods it is checked, that the framework is ready for collaboration

by calling the iscollaborationReady () method of the CEFXDOMAdapter. If that is

the case the call is forwarded to the corresponding method of the CEFXDOMAdapter.

If the framework is not ready for collaboration (for example if it has not been prop-

erly initialised) the corresponding action is directly executed on the given parent

Element node. The following source code example shows, how this is done in the

case of a call to the insertBefore (...) method of the Advices class.

public static Node insertBefore(Element p, Node c, Node o)

CEFXDOMAdapter doma = CEFXUtil. getDOMAdapter();

if (doma != null)

if (doma. isCollaborationReady()) {

return doma. Node_insertBefore(p, c, o);

return p. insertBefore(c, o);

}

185

6.1.7. The awareness package

CEFX provides the user with information on other user's actions. The classes that al-

low the integration of awareness mechanisms into a collaborative real-time editing

system are located in the awareness package of CEFX. The main component is the

AwarenessController (AC). The AC receives awareness information from own or

other clients in the form of an AwarenessEvent object. It propagates the Awarenes-

sEvent to the other clients or visualises the information with the help of an

AwarenessWidget. CEFX provides default AwarenessController and Awareness-

Widget implementations. The DefaultWldget class visualises information in the

form of a small window that shows text messages to a user if, for example, another

user inserted a new node into the shared document, or selected a node using the com-

puter mouse. When editing a large document, where a user can only see a small part

of it, this information can help to "be aware" of what other users are working on.

Figure 6.9 shows the classes and interfaces in the awareness and the aware-

ness. event package.

69 fld. C. f.. awareness

a it`tf"feMa s"f eliýfa Sersý. zsDle
Awsreneas Widyat ------ AbsdactAwatwess Wdgef AwarenfssEvfM

- razrr: erea. 'F a. aýer e;; E": er: ýcc: ear
_ se: R i. a"eressCcr; "c;: eý 4.. air e:: __cr: "o�e. ,.

rýCe ce ýý"

0'

AwannfssComrollerlmpl
____ . irte'fsýl.

. "fsli=fs AwsrenessConbolfer

;; e,:. Jge. '.,. a"e-e=_'.: '; e: ._c

ge1CEFXControllerl _DNsWtAwarenfssControffrlmpl
awnnessEvrtiA v. -'es; E. e'

e.
ý 0

pýpagateA w aper eo; E e-:. ý ;. a" ems. e: nE. ems: ..

d hd. n Clis 7Wirsoas . Vfm,

.tu r1". Ii_rs
AwaramnssEv. ntDescnpbons

- I-SE_PPESSE"

"'I: ý JSE_M^VEE

- '. ýý JSE_BUTTOr. ' =_i_"E_
-' 17JSE SELECTION
"E "IOTE DPERATION

" __.
'L ýPEP, ATION

"= ==GCSEC

ýTID Z: LCSEC

EventPropagabr

: ýFE INTERNAL

- SGCFE EXTERNAL

IIE - - SE: ý.. 3'c "Eii '--z

xfýý^'f'Yti_ra
Awar. ne»EvantTypes

' ý7JSE_E. E'. T

: ---_E , ENT

'i E, 'ENT

Figure 6.9: Classes in the awareness and awareness. event package

186

The AwarenessController interface is implemented by the AwarenessControl-

lerzmpi class. This class is the base class for AC extensions and the default AC

provided by CEFX is implemented in the DefaultAwarenessControllerimpl class.
The AwarenessControllerrmpl is provided with references to the awareness wid-

gets. The AwarenessWidget interface defines the methods that need to be

implemented by an awareness widget. The class AbstractAwarenessWidget imple-

ments those methods and acts as the base class for awareness widget extensions such

as the DefaultWidget class. The AwarenessEvent class carries awareness event in-

formation such as the type of an event, the event description, the source of the event
(for example the clients name) and an event object. The event object can be of any
type, it is only required that the awareness widget that is interested in that event
knows how to deal with it.

The awareness. event package contains the EventPropagator class which is re-

sponsible for propagating events to the AC. The enumerations
AwarenessEventTypes and AwarenessEventDescriptions define a set of possible

event types and descriptions but CEFX is not limited to those. They are merely used
to facilitate the implementation of awareness widgets.

In the following the AwarenessController and Awarenesswidget interface meth-

ods are discussed before explaining how events are propagated with the help of the
EventPropagator class.

6.1.7.1. The AwarenessController interface

The following methods are defined by the Awarenesscontroller interface:

" void registerWidget(AwarenessWidget widget);

" void setCEFXController(CEFXController controller);

" CEFXController getCEFXController();

" void awarenessEvent(AwarenessEvent event);

" void propagateAwarenessEvent(AwarenessEvent event);

As mentioned before, the AwarenessController is initialised by the CEFXControl-

1er. The CEFXController also initialises the AwarnessWidgets and registers them

187

with the AwarenessController. This is done by using the registerWidget (...)

method. The CEFxcontroller provides the AwarenessController with a reference

to it by calling the setCEFXController (...) method. The AwarnessController

uses this reference to retrieve a reference to the NetworkController in order to send

awareness events over the network. The getController (...) method returns the

reference to the CEFXController. When an event is to be forwarded to an awareness

widget, the awarenessEvent (...) method of the AwarenessController must be

called. The method propagateAwarenessEvent (...) propagates an event to the

other clients in a session. Before an event is visualised or propagated, it is checked, if

any widget exists that is interested in such an event. If no widget is interested, the

event is dropped.

6.1.7.2. The Awareness Widget interface

The Awarnesswidget interface defines the following methods:

" boolean hasInterestIn(AwarenessEvent event);

" void notifyOfAwarenessEvent(AwarenessEvent event);

" void setAwarenessController(AwarenessController ac);

" void init();

In order to check if a widget is interested in a certain event, the method hasznter-

estin (...) is used. If the widget is interested, the AC notifies it of the event by

calling the notifyofAwarenessEvent (...) method. The widget will then visualise

the event in some way to the user.

When a widget is registered with the AC, it is provided with a reference to it by a call

to the setAwarenessController (...) method. The AC initialises the widget by

calling its finit () method. When initialised, a widget usually displays some sort of

window or dialogue to the user.

The Defaultwidget implementation of CEFX opens a small window with a text box

that shows a message. This small window is independent of the editing application

and can be closed or minimized, if it is not needed. The figure below shows a screen

shot of the default widget.

188

Editing session started
Source: Clientl Event: MOUSE PRESSED java. awt
Source: Client1 Event: MOUSE_PRESSED java. awt
Source:

Editing session with other client: [Client I'
Source:
Source: Client1 Event: MOUSE PRESSED java. awt
Source: Clientl Event: REMOTE OPERATION U(Ck

Figure 6.10: The DefaultWidget visualises the awareness events as text messages

6.1.7.3. Propagating events

As mentioned before the Event Propagator class is used to propagate the awareness

events to the AC. It defines the following static methods:

" void propagateEvent(Object event, String type, String descrip-

tion, int scope, String source);

" void setAwarenessController(AwarenessController ac);

The AC provides the EventPropagator with a reference to it by calling the set-

AwarenessController (...) method. The EventPropagater uses this reference to

forward events to the AC. In order to propagate an awareness event, the propdq-

ateEvent (...) method is used. The propagateEvent t ... method requires the

following arguments to be passed to it:

" object event. This can be an object of any type and represents the original

event that occurred. For example a mouse event or a key event.

" string type. A text that identifies the type of' event. For example

"MOUSE-EVENT" or "KEY BOAR D_EVENT". The type argument will be used to find

the awareness widgets that are interested in this event.

" String description. A text that describes the event in further detail.

" int scope. The scope of the event. Two scopes exist, the internal and the ex-

ternal scope. The internal scope is for events that should not be propagated to

189

other clients but visualised to the user. The external scope is for events that

should be propagated to other clients.

" string source. A text that identifies the source of the event. This could be, for

example, the client's name or id.

As the propagateEvent (...) method is static, it can be called from nearly any con-

text within a program. This makes it easy to develop event listeners that forward an

event to other clients. The plug-in architecture of CEFX makes it easy to create and

integrate new awareness widgets that react to those events and visualise them.

2 EventF"c a9atc" =... e"f^fssýcnrcnf . aas"enessV ýaýft wet, +: aC: ^rcue"

E: e^' stf^r

c'cclsaccE:. f^: f. f ^: 7t
, fQ týcf 5, d Jssc St,, -.; sxc4 tr ts: �or. 5t"rp

C. n a"fressEvfnt

:: lalt. A", rf^fssEýf^t fvf^t+.; ! 'f'f SSE vf':

^^8SI- e'Eitl^ f,. Qnt -. + a'E^essE: e^:

L71

I

,
iJaft fxn that ^! i ^tf'fi: it frf^l

,
: cajlleý. oa'ressE. i`: f-: 4': -. ' ¢'F^iSSE. fv^:

0. [j

Figure 6.11: Propagation of an awareness event with external scope

Figure 6.1 1 shows a scenario of event propagation. The EventListener in the se-

quence diagram is for example a mouse listener (e. g.

j ava. awt. event. MouseListener) that reacts on computer mouse clicks. If a user

clicks for example on a certain object, the mouse listener calls the static propag-

ateEvent (...) method of the Event Propagator. The given scope in this case is

external, meaning that the event will be propagated to all other clients in the session.

The EventPropagater creates a new AwarenessEvent object and passes it to the

AwarenessController using the propagateAwarenessEvent (...) method. The

Awarenesscontroller then checks each registered Awarenesswidget if it is inter-

ested in the event. If an interested widget is found, the AwarenessController calls

190

the propagateAwarenessEvent (...) method of the NetworkController which in

turn will propagate the event to all other clients in the session. At the other client's

site, the NetworkController receives the awareness event via its

awarenessEvent (...) method (see chapter 6.1.4) and directly forwards it to the

AwarenessController. The AwarnessController, in the context of its own aware-

nessEvent (...) method, tries to find a widget that is interested in that event. Thus

the AwarenessController invokes the haslnterestln (...) method on each re-

gistered AwarenessWidget. If a widget is interested in the event, the

notifiyofAwarenessEvent (...) method of the widget is called and the widget

then visually alerts the user to the event.

Figure 6.12 shows the described scenario of an incoming remote awareness event.

ren.: cnt"NI. A,.. "e^ESSCc't lI. A sEness^: wpEt

n
pE^": tE : I,.,.

8"ýI"E^ESSE: E': EvE": =. "`9'E ^ESSE": E^t

ip r. tl :. II ;

8 48'E^ESSEsE"t t '-t =. 8'E^ESSE rE-t.
lip

'^ssI'tE. EStIn, EýEnt AýynnESSE. Eýt

; is ^te'es: co i^ E": E^ý: ýcutýr1A,. ý"ýnESSEwnE: E^c A. rE^ESSE: E'.
lip

Figure 6.12: Scenario of an incoming remote awareness event
In the case of awareness events that should not be propagated to other clients but

visualised (via a widget) to the user, the internal scope for event propagation exists.

The internal propagation of events may make sense, for example, to notify the user

of a new user joining the session. It can also be used to inform the user of conflicts of

locked nodes or - as it was used in this implementation of' ('F. FX -- of the execution

of a remote operation.

Figure 6.13 shows a scenario of an internal event propagation. This scenario is simil-

ar to the scenario in figure 6.12 except that the awareness event is not received by the

191

NetworkController. The EventListener (this could be any class being triggered

by an event) calls the Event Propagator's propagateAwarenessEvent (...) meth-

od with the scope argument set to "internal". Thus the EventPropagator this time

calls the awarenessEvent (...) method of the AwarnessController instead of the

propagateAwarenessEvent(...) method. The AwarnessController in turn

checks the registered widgets if they are interested in the event. It calls the not ifyo-

fAwarenessEvent (...) method on each widget that has an interest in the awareness

event. The widgets then visualise the event.

Y EVentF"JDa atG" Aýe"eneiiC: nt"_II. " A. +'e'ery33': ': i0ýet

E . ̂ tTý: te^e'
C'_[e; Dtfl ! 'e^essE: E^t e: e^: 71:, e C. t, r. St'i^y]eso St'ira sOC(: e i^t sc .. 'OE "i^a

Awra". nessEvent

rte'-, smce' s"+e"enc-ssE v. rr, e": ent A.. a'eressEve^t

'resl^: e'estlre. e^: =: e'e^essE: e^t
Iý

. Is 1^: e"tste. 1^ evfrl. ^ýýýtý f' a e^essE: e^t e: e^' ýI'e^essE: e^'

as.. ehse E: e^t e: e-: = e'eressEý. ^:

Figure 6.13: Scenario of internal awareness event propagation

6.2. CEFX Server

The CEFX server was implemented as a stand-alone application and is independent

of the CEFX client but relies on the same classes as the client for concurrency con-

trol. The server keeps a local copy of the shared document in an editing session and

executes the same operations as each client. For concurrency control the Concurren-

cyController and ConflictResolutionProvider classes are provided to the

server in a JAR archive and linked into the server's class path.

In contrast to the client, the server does not require the DOMAdapter or the Aware-

nesscontroller and AwarenessWidget components as it does not connect to an

192

editing application and does not have any user interface.

The server's source code is structured into a base package (de. ndm. cefx . server), a

networking package (de. hdm. cefx. server. net) and a utility package (de. hdm. ce-

fx. server. utii).

The following sections discuss these packages and their contained components.

6.2.1. The CEFX server base package

The server's base package contains the classes illustrated in figure 6.14.

a inte'f90Es

CEFXServer

-ecr, ýEF. xrf: eý, Str-g
- oaciicaument(ýtncg. Doci mec;
- ýc. acGecu, mentýDocumer-, _, ýg CEF. 'C; eý. b^.,

_a.
- c-1e3eCecs, c,, 1Strtng. CEFXSe3zýon bec, ear
- e. ecuteOperat orýOpe ar. c- booea'

Ope ar onE. ýecuteý ve -ss Runr, ýble
CE FX Doe ument Serverse

veý

pýument Saver

-OCc reT'tPeccsr. IBC

Doc umentRepos itoryMap

- derSt"ird, LF. I

Figure 6.14: CEFX server classes in package de. hdm. cefx. server

The CEFXDocumentServer class implements the CEFXServer interface and is the

main class of the server. It also implements the OperationExecutor interface and

thus acts - from the perspective of the ConcurrencyController -as client. The r-

FXServer component is (similar to the CEFXController component of the client)

responsible for maintaining a sessions with each client that is connected to it. It is

also responsible for providing each new connected client with a copy of the shared

document.

193

The server stores the current version of the edited document in its local repository.

This allows it to store the changes of the edited document, even if the server is

stopped or the editing session ends. The next time a client opens a session for the

same document, it will contain the same state as when the previous session ended.

Storing the document periodically is done by the Documentsaver class. The Docu-

mentSaver was implemented as an independent thread (using the

Java. lang . Runnable interface) that stores the document after a certain time (in this

case every 30 seconds). The name of the server's local document repository is

ServerTempRepository which is located in the CEFX installation directory (see

chapter 7.3).

The Document RepositoryMap class maps each document within the server's docu-

ment repository to a document id. As mentioned in chapter 6.1 the document id is

transmitted to the server when loading a document. The DocumentRepositoryMap

only has one method get (String id) which returns an URI that allows to locate

and load the document directly from the server's repository and return it to a client.

6.2.1.1. CEFXServer interface

The CEFXServer interface defines the following methods:

" boolean closeSession(String clientId, CEFXSession session);

" boolean executeoperation(Operation o);

" CEFXSession connect(CEFXClient client, String documentURl);

" boolean uploadDocument(Document doc, String documentURl, CEFX-

Client client);

" Document loadDocument(String documentURl);

The closeSession(String clientId, CEFXSession session) method is called

when a client wants to disconnect from the current editing session. The server then

removes the calling client from the session. The method executeOperation (Oper-

ation o) is called when a remote operation arrives at the server site. The server

delegates the execution of the operation to the Concurrencycontroller.

The activity diagram in figure 6.15 shows the program flow at the server site when a

client connects to the server.

194

ad Connect to server

call t- 5e-: e'B =--e=

creo. f--' JA G. ̂ 'E^[
add client to the
list of eonnrceed

c Iionts JC cu 'T'ert J: RS

DI'EHJj exists at the se, ", sole.

cr aW n! w sefs/on for

:s ssiCr ft. ' "eOýKtoo J: c. 'rert i5

add client b session

'Etu'' Sessicr

Figure 6.15: Connect client to server activity diagram

The connect (CEFXClient client, String document, 1PT) method is called when

a client wants to start or join a new editing session. The :1 ient argument (of' type

CEFXClient) contains all required information about the client, such as name and

identifier (see chapter 6.1). The documentURZ argument (of type Str ing) identities

the document that is to be edited. After the connect (...) method has been called,

the server adds the client to his list of connected clients. Then the server checks if the

requested document has already been stored in a previous session at the server site

(in the server's local document repository). If the document is found. the server

checks if a session for the document already exist, which is the case if another client

has started a session before. If no session exists, the server creates a new session.

Then the client is added to that session and the server returns the session object to the

client. If the server cannot find the requested document in its local repository, a null

pointer instead of a session object is returned to the client. This informs the client of

the fact that the server does not have the document so it cannot start a session and

195

connecting the client fails. In this case the client needs to upload the document to the

server first, before an editing session can be started.

This is done by calling the uploadDocument (Document doc, String documen-

tURI, CEFXClient client) method. The doc argument (of type

org. w3c . dom. Document) of this method contains a copy of the client's local docu-

ment. The documentURl argument contains the path to the document within the

client's local repository. The server uses this path to store the document at the same

location within its own local repository. The documentURl is thereby used as an

identifier for each document. The client argument (of type CEFxclient) contains

all necessary information for the server to identify a client. The steps that are ex-

ecuted by the server when the uploadDocument (...) method is called are shown in

figure 6.16.

: 811 ,_ �[
IC9J. ý.: GL ^'E^, ^"Etl^[�

add a UUID to each
store the document in the

element node within the
servers Ixal repository document

'et'- t'ýE

Figure 6.16: Uploading a document activity diagram

The server prepares the document for concurrent editing, by adding UUIDs to each

element node. This allows easy identification of each node within the document.

After this is done, the document is stored in the server's local repository in order to

be able to send it to the next client connecting to the session.

After the client has uploaded the document, it connects to the server again. This time,

connecting will not fail. The next step for the client is to retrieve the processed docu-

ment (now containing UUIDs) from the server. This is done by calling the

1 c)adDocument (String documentvRZ) method of the server interface. When this

method is called the server locates the document within its local repository by using

the given documentURZ argument. If the document is found, the server returns a copy

of it to the client (as object of the type org. w3c. dom. Document).

196

6.2.2. The net package

The net package contains the NetworkController class, the ServerConnect ion in-

terface and its implementing class serverconnectionlmpl.

The Networkcontroller is responsible for providing a network port that allows cli-

ents to connect to and delegate the client calls to the CEFXServer. In order to allow

clients to connect, the NetworkController owns a ServerConnection. The

serverConnection interface acts as the remote interface for the clients and thus ex-

tends java. rmi. Remote62. The ServerConnectionlmpl class implements the

methods of the ServerConnection interface and delegates all calls to the CEFXServ,, -
er. As the ServerConnection interface methods directly correspond to the method

of the CEFXServer interface, they are not further discussed here.

Figure 6.14 shows the CEEXDocumentserver and NetworkController classes and

their relations.

. rote qoe*
CEFXServer

aoýneü. -EFX; ems� _. eng ýEFXSess, on
foaoVocumentic; n. g Document

ploadDocume7rDocu+erýt _dn,: g CEFXGLent booree-

cIoseSes-. ^l. `ý -E;, '. e-- or boo; ea,

eýecuteCýce, 37 -- --c a. -- be: 'eal

Un, c stR. wot. OD,. cc
ServerConn. cbonwnpl

{7

.. n1fIls Cf.

" tc . Herb ýEFXýl: ec: ý. ý. q '. EFti_Sess, oc

- oploaaC"c_ýr. er C. o. ý+eý. _. ýq -EF -r enr eoorea,

- eýecuteGceýa:. a . ceýa: c ooýeaý,

CEFXDoeumentServer i1 NNwofwControll. r

Figure 6.17: CEFX server classes

When the server is started, the Networkcontroil er is initialised and subsequently
initialises the ServerConnectionlmpl. It then binds the st"r v-rr-onnect ion with

the RMI registry in order allow the clients to look up the server interface and call the

62 Java Remote Method Invocation (RMI) is used in this implementation of the Network('ontroller. For

more information on RMI see: http: //java. sun. com/javase/technologies/core/basic/nni/iridex. jsp
. re-

trieved October 30,2007

197

corresponding server methods. With this set-up the server is ready for incoming cli-

ent requests.

6.2.3. The util package

The server's util package contains the class ServerUtil having one utility method:

" Document addUUlDsToDocument(Document document);

This method accepts a document object of the type crg. w3c. dom. Document and

adds UUIDs to each element node in the document. In order to do this, the document

is normalized (removing unnecessary text nodes) and a UUID is created for each ele-

ment node using the same method as in the newuUID (...) method of the CEFXUtii

class (see chapter 6.1.6).

6.3. Computer Networking issues

6.3.1. Network bandwidth and delay

With the constant development in computer networking technologies over the past
few years, network bandwidth has increased dramatically. While a few years ago, in

the early 1990s, a 10 MBit/s local area network (LAN) was state of the art, today I

GBit/s or 10 GBit/s LANs are standard at home or in companies and organisations.
With the commercial application of the digital subscriber line (DSL) technology the

internet connection speed also increased dramatically and today the standard internet

connection data rate via DSL is between 1 MBit/s (ADSL) and 50MBit/s (VDSL)63.

This enormous increase in bandwidth facilitated new internet applications such as in-

ternet telephony (Voll?), video telephony, IPTV and on-line gaming.

Thus, when developing a collaborative real-time editing application, the network
bandwidth issue is usually not as big as it used to be a few years ago. At least not

when developing a real life practical application that can rely on an organisation's 10

GBit/s LAN. However, when designing a collaborative real-time editing application,
it still is important to keep the bandwidth in mind and not to squander it - especially

63 Provided by Deutsche Telekom: T-Home Entertain Comfort Plus VDSL, T-VDSL2 50 in selected re-

gions in Germany, Source: http: //de. wikipedia. org/wiki/VDSL, retrieved October 30,2007

198

when the application is required to work over the internet. -

Another networking issue is the network delay. The network delay in an IP network

is generally the round trip delay for an IP packet. IP network delay comprises the

sum of transmission delays and queuing delays experienced by a packet travelling

through the collection of routers, switches and other hardware that comprise the net-

work64. This is particularly an issue when transmitting information over the internet.

IP network delays can range from just a few milliseconds to several hundred milli-

seconds.

When designing CEFX, the networking delay and network bandwidth issues were

taken into consideration. Network delay was an important issue in the design of the

CMAX concurrency control algorithm. The network delay can cause operations to

arrive "out-of-order" at a client's site and the concurrency control algorithm must be

able to cope with this. Thus CMAX orders the operations independently of their ar-

rival time at a client's site, using the total ordering relation (see chapter 3 and 4). This

allows to synchronise a shared document independently of any networking delay,

even if the delay is very long.

Real-time collaborative systems that work on the basis of transmitting low-level in-

put/output data such as key-strokes, mouse movements and display pixel data (see

chapter 5.2) encounter the problem of high network traffic. The high network traffic

is caused by the transmission of every single key stroke or mouse movement and dis-

play pixel data, generating many IP packets containing only little information. A

field study at Airbus in 2007 showed that the used collaboration system (IlP Remote

Graphics) required about 4 MBit/s of bandwidth (synchronous) when 5 users work in

parallel in order to achieve an acceptable performance (Guenther and Hörich 2007).

In order to synchronise a shared XML document, CEFX transmits operation ob-

jects containing XML nodes in a serialised form over the network. Operations are

transmitted much less frequently than mouse movements or key strokes, producing

less network traffic. As the operation objects do not carry very much information -
basically they contain the XML node and the state vector - they are not very large,

which saves bandwidth. Only at the beginning of an editing session is the complete

61 Source: http: //en. wikipedia. org/wiki/Network_delay, retrieved October 30,2007

199

XML document transmitted over the network, when a client connects. Thereafter the

network transmission is reduced to the operation objects. That is, if the awareness

widgets do not require to transmit mouse movements or key strokes. Network traffic

was one reason for the decision to transmit only mouse selection events when design-

ing the default CEFX awareness widget. However, the plug-in architecture of CEFX

allows easy configuration of the awareness mechanisms or deactivation of them, if

the available network bandwidth requires it.

In order to optimise the transmission of the operation objects, they could be com-

pressed before transmission and decompressed when they arrive at the target site.

This would additionally reduce the network traffic and may be a task for the future

development of CEFX. Compressing operation objects could be of interest, if

CEFX is used in a mobile environment, for example on mobile phones, where net-

work bandwidth is still an issue.

6.3.2. Networking software issues

6.3.2.1. Remote Method Invocation

CEFX uses the Java Remote Method Invocation (RMI) API in order to transmit in-

formation over the network. RMI is an often used, very efficient and reliable way for

remote procedure calls. As it is part of the standard Java runtime, it is well docu-

mented and easy to use. These were the main reasons for choosing RMI when

designing CEFX. However, the standard Java RMI implementation has some draw-

backs in terms of connectivity. It is required that each network node (computer) that

is to be connected using RMI must be in the same (virtual) network. This means that

each computer must be able to "reach" the other ones directly by using the TCP/IP

protocol.
This is usually not the case when a computer is connected to the internet through an

internet service provider via a dial-up or a DSL connection. Depending on the net-

work topology, a number of routers (NATs) and firewalls could lie between the

network nodes preventing the computers from directly connecting. One solution to

the problem is a Virtual Private Network (VPN) (Gleeson et al. 2000). Another al-

ternative is using a so called Peer-To-Peer (P2P) technology. The following sections

200

briefly discuss these two approaches.

6.3.2.2. Virtual Private Networks

A VPN is often used by companies or organizations and allows confidential commu-

nication over a public network such as the internet. The network traffic is encrypted

and is carried on top of standard protocols such as TCP/IP. The problem with a VPN

is that it is relatively complicated to set-up and requires the installation of special

VPN software and hardware components. Although encryption ensures a secure in-

ternet connection it also can slow down the network throughput. The advantage is,

that with a VPN, RMI could be used for connecting clients over the internet in spite

of the network topology.

6.3.2.3. JXTA

JXTA (Juxtapose) is an open source Peer-To-Peer (P2P) platform created by Sun

Microsystems in 200165. It defines as a set of XML based protocols that allow any
device connected to a network to exchange messages and collaborate in spite of the

network topology. JXTA was designed to allow a wide range of devices - PCs, main-
frames, cell phones, PDAs - to communicate in a decentralized manner". The

devices that are connected using JXTA are called "peers". Peers create a virtual over-
lay network allowing direct interaction even when some of the peers are behind

firewalls and routers (NATs). A Java implementation of JXTA is available and could
be used to integrate it into CEFX by extending the NetworkController component.
This may also be a task for the future CEFX development.

6.4. Supporting awareness mechanisms

The CEFX prototype system developed in this work only supports very simple

awareness mechanisms. It notifies a user of the mouse selections and XML document

changes of other users in the form of text messages. This may be not sufficient for a

productive system but enough for a proof of concept prototype. Providing complex

awareness widgets goes beyond the scope of this dissertation.

63 Official JXTA website: http: //www. jxta. org/, retrieved October 30,2007

66 Source: http: //en. wikipedia. org/wiki/JXTA retrieved October 30,2007

201

However, as mentioned before, the plug-in architecture of CEFX allows third party

developers to easily integrate their own awareness mechanisms in the form of aware-

ness widgets. This is done in two steps. The first step is to develop a widget plug-in

that implements the AwarenessWidget interface. The easiest way to do this is to de-

rive a new class from the AbstractAwarenessWidget class. This will leave the

following methods to be implemented for the developer:

" void init();

" boolean hasInterestIn(AwarenessEvent event);

" void notifiyOfAwarenessEvent(AwarenessEvent event);

The method finit () is called upon initialisation of the widget class. In this method

the widget should create the user interface which will contain the information that is

to be presented to the user. The method hasznterestrn (...) is called just before

the widget is notified of an event and should contain code that checks if the given

event is relevant to the widget. For example a widget that will notify the user of key

strokes may not be interested in mouse events or vice versa. The notifyOfAware-

nessEvent (...) method is called by the framework when the corresponding event

(e. g. key event) has occurred and should contain the code that presents the event in

some way to the user.

The second step is to use the extension point mechanism of CEFX to inform the

framework of the new plug-in by registering it in the CEFX configuration file (ce-

fx. xml). The framework will then load the new awareness widget at start-up.

Registering a plug-in is done by adding the following code to the cefx. xml configur-

ation fi le:

<ExtensionPoint id="AwarenessExtensionPoint" name="Awareness Exten-

sion">

<AwarenessExtension id="AwarenessExtension">

<AwarenessWidget class="my. own. AwarenessWidget">

<AwarenessEvent>KEY EVENT</AwarenessEvent>

</AwarenessWidget>

//...

</ExtensionPoint>

202

After registering the widget, it has to be activated by adding the following code to

the cefx. xml configuration.

<Activation>

<ExtensionPointRef>

AwarenessExtensionPoint

</ExtensionPointRef>

</Activation>

The text between the ExtensionPointxef tags has to be identical with value of the

ExtensionPoint's attribute id.

The awareness widget integration mechanisms could also be used to integrate other

kinds of collaboration supportive widgets. For example it could be used to integrate a

simple chat widget that allows the users to communicate directly, typing text mes-

sages in order to coordinate their work more easily.

The development of new more supportive awareness widgets is a task for the future

development of CEFX.

6.5. Conclusions

The CEFX framework has been successfully developed and will be applied in the

prototype collaborative editing system described in chapter 7. It consists of a server

and a client part which are structured in different Java packages depending on their

functionality.

Although other technologies such as peer-to-peer (JXTA) could have been used for

this work in order to connect the distributed clients, the Java Remote Method Invoca-

tion (RMI) technology was selected because it was found to be simpler to apply yet

adequate for the purpose of this thesis research. After testing and refinement of the

CEFX components, the framework was successfully integrated into a SVG graphics

editing application for a proof of concept prototype which is discussed in chapter 7.

203

Chapter 7. Integration of CEFX into an existing single-

user application

As mentioned in chapter 5.3 the transparent extension of an existing single-user ap-

plication with CEFX is achieved by connecting it with and integrating the CEFX

DOM Adapter (DA). The DA integration can be achieved in different ways.

One way is to directly connect the DA to the single-user application's internal data

model. Another way is to connect CEFX with the application through a DOM/DOM

translation layer that forwards the application's data model events to the DA and vice

versa. The last possibility is to develop a DOM/API translation layer which translates

application and runtime (OS) events into DOM events and vice versa.

For the proof of concept prototype implementation, the first possibility was chosen -
directly connecting the DA with the application's data model. The objectives were,

not to change the extended application's source code and to integrate CEFX with

minimal effort. This was achieved by using a new programming paradigm: Aspect

Oriented Programming (AOP).

The GLIPS Graffiti editor" was selected as single-user application for the transpar-

ent integration of CEFX. The GLIPS Graffiti editor is an open-source cross-platform

SVG graphics editor developed by ITRIS68. It enables the creation of regular SVG

files. As GLIPS is a Java application, it was necessary to use an aspect-oriented ex-

tension to the Java programming language. In this case AspectJ was used for the

development of the required aspects.
The following sections explain the basic concepts of AOP briefly and how it was

used to integrate CEFX into the GLIPS editing application in order to enhance it with

collaborative real-time editing functionality.

67 GLIPS Graffiti SVG Graphics Editor, http: //glipssvgeditor. sourceforge. net/ , retrieved October 30,

2007

" For more information on ITRIS see: http: //www. itris. fr/, retrieved October 30,2007

204

7.1. Extending GLIPS

7.1.1. Aspect Oriented Programming

Aspect-oriented programming (AOP) or Aspect-oriented Software Development

(AOSD) is a programming paradigm for the separation and encapsulation of con-

cerns, especially cross-cutting concerns, within a software. A concern within an

software is, for example, logging. Logging, in the terminology of AOP, is an ex-

ample for a cross-cutting concern because, within the source code of a software,

logging code usually exists at many different locations. One advantage of AOP in

comparison to, for example, object oriented programming is that these cross-cutting

concerns can be located and managed at a single source code location, reducing

maintenance effort and and obtaining more clarity. The most popular AOP language

is AspectJ69, developed by Gregor Kiczales et at. at Xerox PARC70.

In order to encapsulate cross-cutting concerns at one place, so called aspects are

defined which are then integrated into the software not earlier than at compile time.

An aspect can alter the behaviour of the base code (the non-aspect part of a program)

by applying advices (additional behaviour) at various join points (points in a pro-

gram) specified in a quantification or query called a pointcut (that detects whether a

given join point matches). An aspect can also make binary-compatible structural

changes to other classes, like adding members or parents'.

7.1.2. AOP integration of CEFX

The CEFX DOM Adapter (DA) is the entry point to the framework. At the beginning

of each collaborative session, when a document is opened by the user, the DA is

provided with a reference to the Document Object Model (DOM) of the application.

This is done by one of the advices that are called if a certain join point within the ap-

plication is executed. For each local modification of the DOM, the DA creates an

operation which is then executed and propagated to the other sites. Incoming opera-

69 The Aspect) Project, http: //www. aspectj. org , retrieved October 30,2007

70 PARC, Palo Alto Research Center, Inc., http: //www. parc. xerox. com/ , retrieved October 30,2007

71 Aspect-oriented programming, http: //en. wikipedia. org/wiki/Aspect-oriented_programming , retrieved

October 30,2007

205

tions are - after passing different synchronisation steps - eventually executed dir-

ectly on the DOM of the application, as if they were executed locally by a user

action.

When extending the GLIPS Graffiti editor, the cross-cutting concerns that were inter-

esting were the modification of the applications data model. The first step was to

identify the relevant join points that are executed when the data model is modified.
User operations such as drawing a line, changing the colour of an object or deleting

an object, modify the applications data model.
The GLIPS Graffiti editor is used to create and edit Scalable Vector Graphics (SVG).

As SVG is an XML document format, GLIPS uses an XML document internally as
data model. For the modification of the XML document, GLIPS makes use of the

DOM API. For rendering the SVG graphics to the screen, the Apache Batik library is

used72. Batik provides its own implementation of the DOM which complies to the

W3C DOM specification.
This simplified the identification of the relevant join points. All calls to functions

defined by the W3C DOM API were possible candidates for a relevant join point.
The next step was to write an Aspect class that encapsulates the cross-cutting con-

cerns at one place. The Aspect class is similar to a Java class and can contain normal
Java code and, additionally, AspectJ components. A simple example:

public aspect DOMAccessAspect {

The defined Aspect is then woven into the application's code at compile time. The

application's source code is not modified. The Aspect class defines point cuts that are

executed by AspectJ when the matching join points are reached within the applica-

tion.

The following calls to the W3C DOM API methods were identified as most relevant

to the modification of the GLIPS data model:
0 Node appendChild(Node newChild);

" Node insertBefore(Node newChild, Node refChild);

'2 Batik SVG Toolkit, http: //xmlgraphics. apache. org/batik/, retrieved October 30,2007

206

0 Node removeChild(Node oldChild);

" void setAttributeNS (String namespaceURl, String qualifiedName,

String value);

" void setAttribute(String name, String value);

The first three methods are defined by the org. w3c. dom. Node interface, the last two

by the org. w3c. dom. Element interface. The methods appendChild(...) and in-

sertBefore (...) are called whenever a node is added to the document. This is the

case, for example, if the user draws a line in the SVG document. The method re-

moveChild (...) is called whenever a node is removed from the document. That is

the case if the user deletes an object from the document. The methods setAttrib-

uteNS (...) and setAttribute (...) are called if, for example, the user changes

the colour of an object. In SVG the colour information of an object is contained in

the value of the style attribute.

Figure 7.1 shows a scenario of what happens if, for example, the colour of an object

is changed.

GLIPS org. w3c. dom. Element Advice setAttribute CEFXDOMAdapter

setAttribute(name: String, value: String)
DOI

etAttribute tar et: Zement name: String, value: String)

I
Element setAttribute ...

)

join point code interception

setAttribute(name: String, value: String)

Figure 7.1: Scenario of code interception

Whenever the method setAttribute (...) on an element node of the XML docu-

ment is called, the call is intercepted by AspectJ. Instead of directly executing the

207

code of the DOM implementation provided by Batik, the defined pointcut of the as-

pect class selects the relevant join point and the specific advice is applied. The advice

then delegates the call to the DA. The DA creates an update operation which is

handled by the CEFxcontroller and asynchronously propagated to all sites of the

current editing session by the NetworkController. The operation is instantly ex-

ecuted on the local element node and the attribute value is updated.
Pointcuts pick out interesting join points in the execution of a program. These join

points can be, for example, method invocations and executions. An AspectJ pointcut
definition gives a name to a pointcut. The code snippet below shows how the

pointcut of the above scenario is defined in AspectJ.

pointcut setAttributePC(Element p, String attr, String value):

target(p) && args(attr, value)

&& call(void setAttribute(String, String))

&& ! within(DOMAccessAspect);

This pointcut picks out all join points matching a call to a method with the same sig-

nature and parameters as given in the call(...) statement. For each pointcut, an

advice is defined, that contains the code that is to be executed if the pointcut is met.

For each of the relevant pointcuts an advice is defined. The advice, that is executed
for the above pointcut is shown in the following code snippet.

void around(Element p, String attr, String value):

setAttributePC(p, attr, value)
{

Advices. setAttribute(p, attr, value);

}

The static method setAttribute (...) of the class Advices is called here. As dis-

cussed in chapter 6.1.6, the class Advices is a helper class containing the advice's

code. This was done for clarity reasons and in order to separate the Java code from

208

Aspect) code. The code that is executed here is shown in the following code snippet.

public static void setAttribute

(Element p, String attr,

String value)

{

CEFXDOMAdapter doma = CEFXUtil. getDOMAdapter();

if (doma != null) {

if(doma. isCollaborationReady()) {

doma. Element_setAttribute(p, attr, value);

return;

}

}

p. setAttribute(attr, value);

}

First a reference to the CEFXDOMAdapter is retrieved by calling the static method

getDOMAdapter () of the CEFxutii class (see chapter 6.1.6). If the DA is already ini-

tialised and ready for collaboration, the call to setAttribute (...) is delegated to

the corresponding DA method. If the DA was not properly initialised, the setAt-

tribute (...) of the target object is called directly, setting the new value to the

attribute. This is done for example, if the client is not connected to a collaboration

session.
For all other relevant pointcuts the same procedure was applied. The following code

shows an example on how the other advices were defined using anonymous

pointcuts.

Node around(Element p, Element c): target(p) && args(c) &&

call(Node appendChild(Node)) && ! within(DOMAccessAspect)

{

return Advices. appendChild(p, c);

}

209

Additionally to the advices for the manipulation of the data model, advices for creat-
ing or loading of a document and the initialisation of the render context are needed.

Creating a new SVG document or loading and parsing of an existing document is

handled by the sAxsvGDocumentFactory class provided by Batik. Rendering of an

SVG document to the screen is handled by the svGcanvas class (the render context)

provided by GLIPS. When a document is opened, the DA is provided with a refer-

ence to it, in order to integrate changes from the remote sites. After the execution of

a remote operation, the render context of the application is notified in order to repaint

the document. For this reason, the DA is provided with a reference to the applica-

tion's render context. The following advice code is executed, when a document is

opened by the user.

SVGDocument around(SAXSVGDocumentFactory fac, String uri):

target(fac) && args(uri) && call(SVGDocument

createSVGDocument(String)) && ! within(DOMAccessAspect)

{

//Initalisation of the DA

CEFXDOMAdapter da = new CEFXDOMAdapterImpl();

//Proving DA with factory reference

da. setDocumentFactory(fac);

//Creating the document and
//providing DA with a reference to it

SVGDocument doc = (SVGDocument) da. createDocument(uri);

//Exception handling

The DA is also provided with a reference to the document factory. As discussed in

chapter 6.1.1.1, this is required for example, if a session for the opened document

already exists. In this case, CEFX loads the document from the server and handles

the document parsing and initialisation.

The advice for setting the render context is called when the svGCanvas is initialised

210

within the application. The following code illustrates how this is achieved.

af ter (SVGCanvas panel): target(panel) && call(* initializeCanvas(*))

{

CEFXDOMAdapter da = CEFXUtil. getDOMAdapter();

if (da != null) {

da. setRenderContext(panel);

}

}

The SvGCanvas class is derived from javax. swing. JlayeredPane and provides a

method initializeCanvas (). The advice is executed after the initialisation method

has been called. Thus in this case the method call is not intercepted. The advice is

merely used for notifying CEFX of the initialisation and providing it with a reference

to the render context.

7.1.3. Integrating awareness support

The discussed advices were used to integrate CEFX in a way that satisfies the re-

quirements of communication, session management and concurrency control. In

order to satisfy the requirement of group awareness, additional effort is necessary.

As discussed in chapter 6.1.7, CEFX provides a simple awareness widget that allows

notification of each user in a collaborative session; for example, on other user's

mouse selections. This can help a user to get an understanding of what other users

are working at. The awareness widget is a little window, controlled by the CEFX cli-

ent and is independent of the extended application. The application is not aware of

that widget.

For the integration of the awareness support provided by CEFX into the GLIPS edit-

or, additional advices can be used. Java applications make use of certain interfaces

from the j aua. awt. event package in order to retrieve information on mouse clicks

and mouse movements. In the following example it is shown how CEFX is notified

of a user's mouse clicks.

A new Aspect class containing advices for mouse events was developed:

211

public aspect SelectionAspect {

after(MouseEvent event):

args(event) && execution(

void mousePressed(MouseEvent))&&

! within(SelectionAspect)

{

EventPropagator. propagateEvent(event,

AwarenessEventTypes. MOUSE_EVENT. toString(),

AwarenessEventDescriptions. MOUSE_PRESSED. toString(),

EventPropagator. SCOPE EXTERNAL, null);

The above code snippet shows the advice that is executed when the user presses the

mouse button. The static method propagateEvent (...) of the EventPropagator

class is called in this advice. The EventPropagator then creates a new Awarenes-

sEvent object and forwards the event to the AwarenessController which in turn

propagates the event to the other clients in the session (see chapter 6.1.7.3).

The same kind of advices can be implemented for all other kinds of user events such

as typing the keyboard or mouse movements. Using AOP here allows a transparent

integration of awareness mechanisms into the application.

7.2. Integration Summary

To summarize, using aspect-oriented programming for the integration of CEFX into

the GLIPS Graffiti editor did not require much programming effort. Only seven ad-

vices were needed to provide GLIPS with the basic collaboration functionality. Five

of the used advices were related to the DOM API and can be reused for other applic-

ations using the DOM. One advice was specific to the Batik library and one was

specific to the application. The overall performance of the application did not change

noticeably.
AspectJ is one of many existing implementations of AOP. In this case, for example,
HyperJ73 could alternatively be used.

Hyper) Overview (Tarr, P). http: //www. alphaworks. ibm. com/tech/hyperj , retrieved October 30,2007

212

However, one requirement in order to integrate CEFX using AOP is that the target

application is written in a language that is supported by AOP.

AOP implementations exist for many different languages and platforms such as Java,

C#, VB. NET, JavaScript, C/C++, Lua, Python, Ruby, Perl, PHP, Common Lisp and

many others.

Some AOP implementations require recompilation of the application's source code

in order to weave the generated aspect code into it. Other AOP implementations do

not require source code. AspectJ for example, supports byte-code weaving and ad-

vanced load-time weaving. This allows using AOP without access to the

application's source code, which makes it suitable for the extension of commercial

applications.
The integration of CEFX into the GLIPS application had the advantage that GLIPS

uses the DOM for accessing its data model. This simplified the identification of rel-

evant join points. For applications that do not use a standard interface for modifying

their data model, the identification of the join points may be more difficult, but still

feasible.

It can be assumed that using standardised data model interfaces and aspect-oriented

concepts can dramatically reduce implementation efforts in comparison to other ap-

proaches using window event translation and application specific programming

interfaces. This work shows how little the effort is to transparently extend a single-

user SVG editing application using this approach.

7.3. Installation and set-up of the CEFX proof of concept

prototype software

The CEFX proof of concept prototype consists of the GLIPS Graffiti SVG editing

software and the CEFX client and server classes. All relevant Java classes and JAR

archives are contained in the CEFXDemo folder on the CD that accompanies this thes-

is. The folder contains the Java source code and the binary code that is executed.

The CEFX API documentation can be found in the folder CEFXDemo\docs. The

GLIPS Graffiti software's source code can be found in the folder

CEFXDemo\GLIPSGraffiti. The CEFX server source code is located in

CEFXDemo\CEFXServer directory. The binary code is located in the

213

CEFXDemo\serverRuntime folder. The CEFX client source code is located in the

CEFXDemo\CEFX folder. The CEFX client binary code is located in the client runtime

folder. Two folders exist, one for each client. These are CEFxDemo\clientlRuntime

for the first client and CEFXDemo\c1ient2Runtime for the second client. The two cli-

ent runtime folders allow two clients to start on one computer for testing purposes.

The client runtime folders also contain all necessary GLIPS Graffiti binaries and the

AspectJ runtime classes.

In order to install the CEFX demonstration on a computer, the CEFXDemo folder is

copied to the local hard drive first. The next step is to set-up the demo.

7.3.1. Setting up the CEFX demonstration

The CEFXDemo folder contains a file called startCEFXDemo. bat. The following lines

of this file have to be edited.

#Path to the installation directory of the CEFX Demo

set CEFX LOCATION=D: \\CEFxdemo\\

#Path to the Java Development Kit

set JAVAPATH=C: \Programme\Java\jdkl. 5.0_07\bin

The line with the CEFX_LOCATION variable has to point to the installation directory on

the local hard drive. If for example the CEFXDemo is located at C: \Programs\CEFX-

Demo, then this line has to be changed to:

set CEFX_LOCATION=C: \\Programs\\CEFXDemo\\

The line with the JAVAPATH variable has to point to the location of the JDK. The Sun

JDK 1.5 has to be installed on the target machine. It is not sufficient to install the Sun

Java Runtime Environment (JRE) as it does not include the RMI registry software.

The next step is to set-up the CEFX network properties for the clients. The file

named network. properties in each client runtime folder contains the following (or

similar) lines:

214

NetworkControllerImpl. server. hostname=192.168.0.20

NetworkControllerlmpl. server. port=2000

NetworkControllerlmpl. server. connection. name=CEFXServer

NetworkControllerlmpl. client. hostname=192.168.0.21

NetworkControllerlmpl. client. port=3000

NetworkControllerlmpl. client. connection. name=CEFXClient

NetworkControllerlmpl. client. id=1

NetworkControllerlmpl. client. name=Clientl

The first line specifies the IP address or hostname of the server. The address in this

line has to be changed to the IP address of the computer that runs the server. For ex-

ample, if the computer that runs the server has the IP address 10.21.0.25, then this

line has to be changed to:

NetworkControllerlmpl. server. hostname=10.21.0.25

The next line specifies the server port. This line should not be changed unless the

port is already used by another application running on the same machine. The prop-

erty NetworkControllerlmpl. server. connection. name defines the name that is

used to register the server with the RMI registry. This should not be changed. Next,

the NetworkControllerImpl. client. hostname property has to be set to the IP ad-

dress or hostname of the machine that runs the client. The above values show the

settings of the first of the two clients. If the clients and the server run on the same

machine, this can be set to localhost.

The properties for the client port and connection name should also not be changed.

The last two properties specify the client id and the client name. In this case the first

client has the properties set to id=1 and name=Clientl. This should be left as it is.

In the network. properties file of the second client, these properties are set to:

NetworkControllerlmpl. client. id=2

NetworkControllerlmpl. client. name=Client2

If a third client exists, these properties have to be set accordingly. For example for

the third client the network. properties file would contain the following.

NetworkControllerImpl. server. hostname=192.168.0.20

215

NetworkControllerlmpl. server. port=2000

NetworkControllerlmpl. server. connection. name=CEFXServer

NetworkControllerlmpl. client. hostname=192.168.0.23

NetworkControllerlmpl. client. port=3030

NetworkControllerlmpl. client. connection. name=CEFXClient

NetworkControllerlmpl. client. id=3

NetworkControllerlmpl. client. name=Client3

7.3.2. The document repositories

Each client and the server have a temporary repository folder where the currently ed-
ited document is stored. The server's document repository is located in the

CEFXDemo\ServerTempRepository folder. The client's repository has to be specified

in the client. properties file, which is located in each client's runtime directory.

This property file contains the following entries:

CEFXControllerImpl. Tempfile. Location. URI=clientlRuntime\\Client-

TempRepository

CEFXDOMAdapterImpl. Repository. Name=CEFXRepository

The first property specifies the client's temporary repository which is used for storing

the currently edited document. The value is a relative path to the repository folder

starting from the CEFX installation folder. For example, if the CEFX demonstration

software is located in C: \Programs\CEFXDemo, the first client's repository is located

in C: \Programs\CEFXDemo\client1 Runtime\ClientTempRepository. This prop-

erty has to be set accordingly for each client. In the case of the second client, the

value should be set to client2Runtime\\ClientTempRepository.

The second property specifies the relative path to the CEFxRepository folder start-
ing from the installation folder. For example, if the software is installed in

C: \Programs\CEFXDemo the repository folder is located in

C: \ Programs \CE FXDemo\CE FXRepos i tory. This property should not be changed.

The CEFXRepository folder contains all documents that can be edited collaborat-

ively. CEFX checks the path of each file that is opened by the user and if it is located

216

in the CEFXRepository, a new collaborative editing session is initialised. If the doc-

ument is not within the CEFxRepository, it will be ignored by CEFX and can only
be edited in single-user mode.

7.3.3. Starting an editing session

After configuring CEFX, the demonstration software is started by double clicking on

the startcEFXDemo. bat file (this batch file will only work on the Windows operat-
ing system). This will start the CEFX server and two instances of the GLIPS Graffiti

SVG editing application. Figure 7.2 shows a screen shot of the GLIPS Graffiti ap-

plication after starting it.

GLEPS Graffiti Editor

In order to start a new collaborative editing session, a new document has first to be

created and stored in the cEFxRepository folder. After storing the document, it has

to be opened (using the open... menu item as shown in figure 7.2) from the

FxRepository folder. After opening the document. C'EFX will open a new

collaborative real-time editing session for the document. The next step is to open the

same file using the second GLIPS Graffiti instance. After the document was loaded

in both clients, it can be edited collaboratively and is stored periodically by the server
in its repository. The next time the document is opened again, it will he loaded from

the server and not from the client's repository.

217

Figure 7.2: The GLIPS Graffiti editor user interface

When the editing session starts, CEFX initialises the awareness widgets. Figure 7.3

shows both clients and the awareness widgets. The awareness widget windows are

independent of the editing application and can be closed or minimized if they are not

used. CEFX can also be configured to start other awareness widgets or none as ex-

plained in chapter 6.4.

-I C31J c 111129

EdtkV session started Eckft session started
Sovice: dert2 Evert: MOU5EJRE55ED jera. a et. event. ý'. ",, ', ',

i1ýý 1L 'I ' Sovice: Uertl Evert: MOl15E_PRESSED java. ewt. event.
5ovice: Oerk2 Event: REMOTE_OPERATION U(deM2 {2-t iI `- rc Sou ce: CientI Event: MCU

_PRE55ED
yere. ewt. event. h

Sovice: Oxt2 Event: MOl15E PRESSED)ava. awt. evat. Mo.. 1. r: 35 ice: Clentl Evert: REMOTE_OPERATION ll(clectl {2-0,1- .
1; rc Sosce: c entl Event: MO(SE_PRE55EDjeva. aet. event.

/®'. 4 1'rß

[YOU]: Melo, lots start edtkVI []: welcome to CEFXI
Clert2: res, you start with the tlrdesl 1r ,, E -

(ertl : lido, lets start e igl

EJC
(YgJ]: Yes, you start with the tides!

Send C
H

Send

100h:
l ,,, 12501.1,1.1300 1', 1.1 ýi ''. I60, i. 1,1.1100 1.1.1

160 w
1.1. i. i. i, i. i.

ý
i, 1,1, i. 13, T

a? -/

. eet4s . sr 100% -179 r72 ae. *ddaW 10016 r0 r211

Figure 7.3: A collaborative editing session with GLIPS and CEFX

The CEFX demonstration software runs on one computer with two clients. In order

to collaboratively work with two or more clients from different computers, the soft-

ware has also to be installed and configured as described above on the other devices.

In order to work on a shared document at each client site, an empty SVG document

with the same name has to be created in the cEFxRepository folder. When opening

the document at each site, CEFX will load the shared document from the server. The

local document is only a dummy. It does not need to contain anything and is solely

used to identify the document that should be retrieved from the server.

218

The CEFX proof of concept prototype software was tested solely on the Windows

XP operating system. However, because it was developed in the Java programming

language it should run on other operating systems (e. g. Linux) without modification,

provided that an appropriate Java runtime is available for that system.

7.4. Conclusions

A new framework integration concept based on the Aspect-Oriented Programming

(AOP) paradigm was implemented. This is the first time that AOP has been used to

successfully integrate a collaborative editing framework into an existing editing ap-

plication. This thesis argues that using AOP and concentrating on the application's
data model instead of an application, operating system or GUI library API, should re-
duce the effort of implementation. This is because it simplifies the process when
integrating a collaboration framework into an existing single-user application. The

proof of concept prototype that was developed in this thesis, shows that the effort in-

volved was within a practical and efficient time scale.

219

Chapter 8. Final discussion

8.1. Summary

Computer Supported Cooperative Work (CSCW) is an interdisciplinary field of re-

search dealing with group work, cooperation and their supporting information and

communication technologies. One part of CSCW is the so called Real-Time Collab-

orative Editing (RTCE). RICE investigates the design of systems which will allow

several persons to work at the same time (in real-time) on the same document

without risking any inconsistencies.

Existing CSCW editing applications in contemporary research focus on one or only a

small number of document types. However, this dissertation investigated the devel-

opment of a software framework which will allow collaborative work on basically

any XML document type in real-time, representing a more general solution to the

problems of real-time collaborative editing.
In many areas XML is becoming the standard interchange and data format. More and

more applications not only support XML as an exchange format but also use it as

their data model or default file format.

This research study contributes a novel software framework concept allowing soft-

ware engineers to develop new collaborative real-time XML editing applications

without having to invest much time and effort into collaboration issues. The frame-

work is based on a flexible plug-in architecture including support for concurrency

control for XML documents, awareness mechanisms and optional locking of docu-

ment parts. Additionally, this thesis contributes a novel framework integration

strategy that allows transparent extension of existing single-user editing applications

with real-time collaborative editing functionality.

The first chapter of this thesis discussed the XML document structure, the well-
known problems of concurrent editing on linear and hierarchical data structures in

general (divergence, causality violation and intention violation) and existing concur-

rency control techniques.

After the introductory chapter 1, chapters 2 to 4 described the development and im-

plementation of a consistency maintenance algorithm for XML documents (CMAX).

220

Chapters 5 and 6 dealt with the design and implementation of the Collaborative Edit-

ing Framework for XML (CEFX). The last part of the thesis (chapter 7) discussed the

novel framework integration strategy based on the Document Object Model (DOM)

and Aspect-Oriented Programming (AOP).

As proof of the above concept, an existing single-user SVG graphics editing applica-

tion was transparently (without changing the source code of the application)

extended using CEFX and AOP.

8.2. Conclusions

The first chapter explained technical aspects of XML and limitations of using hier-

archical documents in terms of concurrency control. It identified the problems

relevant to collaborative editing of XML documents.

Chapter two analysed the conflict probability when editing hierarchical data struc-

tures such as XML documents. The structure of XML documents was examined and

a theoretical model for the probability of conflicts was developed. In order to find a

formula for the conflict probability when editing hierarchical documents, equations

for calculating the conflict probability when editing data structures such as linear

documents and binary trees were developed. An equation for arbitrary XML docu-

ment structures was then formulated. The next step was to conduct a Monte Carlo

simulation for a variable number of users working on randomly generated XML doc-

uments of different sizes and structures. The purpose of the Monte Carlo simulation

was firstly to demonstrate the devised equations for the simple binary tree structures

were correct. Secondly to simulate concurrent editing on more complex structures in

order to gain knowledge on the conflict probability in real concurrent editing situ-

ations. For this task an algorithm was developed that simulated a number of users

concurrently editing XML documents of different structures and sizes. To get a more

realistic simulation result, the XML documents used in the simulation were gener.

ated based on the properties found in the previous document analysis. The results of

section 2.3.2 showed how the number of conflicts relate to the increasing size of doc-

uments and the number of workers on it. The same simulation was then conducted
for a specific set of XML documents with a binary tree data structure. The results

confirmed the calculated results for binary tree structures (figure 2.13). The simula-

221

tion results for arbitrary document structures did not confirm the equation derived for

arbitrary XML document structures and it was not further investigated. In order to

gain a better understanding of the behaviour of conflicts in a collaborative XML edit-

ing environment a simulation algorithm was developed for visualising a dynamic

editing scenario (figure 2.14). The results of this analysis and the static simulation

results were used as a catalyst for the development of a concurrency control al-

gorithm for XML documents.

Chapter three discussed contemporary research projects on concurrency control al-

gorithms for hierarchical structures and presented a new algorithm for the

synchronisation of XML documents called "Consistency Maintenance Algorithm for

XML" (CMAX). This chapter explained the properties of convergence, causality

and intention preservation and how they are maintained using CMAX. The work de-

scribed in this thesis is the first documented attempt to use universally unique
identifiers (UUIDs) in a consistency maintenance algorithm to address nodes within

an XML document and to use a new state vector swapping scheme (SVS) in order to

preserve intentions. Using UUIDs has advantages over positional addressing

schemes. Intentions can be preserved without the need to transform operations, redu-

cing complexity and calculation time. In the case of resolvable conflicts the SVS

scheme was used to solve the conflicts instead of applying operational transformation

(OT), which is already used in other contemporary consistency maintenance al-

gorithms. The consistency maintenance algorithm (CMAX) supports the

synchronisation of any XML document type. As XML document types exist for

many application areas, the CMAX algorithm can be generally used for the syn-

chronisation of, for example, 2D and 3D graphic documents as well as text

documents or spreadsheets.
The implementation of the CMAX algorithm in software was explained in chapter

four. The software components that are responsible for the consistency maintenance

are the Concurrencycontroller and the ConflictResolutionProvider. The al-

gorithms produced were tested using a specially developed simulation software.

After refinement using the Java programming language, the CMAX algorithms were

successfully integrated into the Collaborative Editing Framework for XML (CEFX).

Chapter 5 discussed contemporary collaboration systems and the CEFX software ar-

222

chitecture. CEFX is based on a logical hybrid architecture and uses a flexible plug-in

concept where each component can be extended or replaced with a new implementa-

tion. This novel technique resulting from this research allows adaptation of the

framework to specific application requirements with little effort. Whereas other re-

search has used application specific software interfaces, this thesis pioneers a new

method of using the Document Object Model (DOM) as a standard interface for the

integration of collaboration functionality into an application, thus reducing the devel-

opment effort dramatically compared with the approaches of others. CEFX provides

a simple-to-use application programmer's interface (API) that enables the develop-

ment of new collaborative XML editing applications or the extension of existing

single-user applications. In addition to the consistency maintenance of XML docu-

ments, CEFX supports awareness mechanisms and optional locking of document

nodes.
The implementation of CEFX and its components was discussed in chapter six. In or-

der to connect the distributed clients, CEFX uses the Java Remote Method

Invocation (RMI) technology. In connection with a virtual private network (VPN)

CEFX clients can be securely connected over the internet. An alternative approach is

the Peer-to-Peer (P2P) technology which was also briefly discussed in this chapter.

Although technologies such as P2P could have been used for this work in order to

connect the distributed clients, the Java Remote Method Invocation (RMI) techno-

logy was selected because it was found to be simpler to apply yet adequate for the

purpose of this thesis research.

The CEFX framework has been successfully developed and was applied in the proto-

type collaborative editing system described in chapter 7.

In chapter 7a new framework integration concept based on the Aspect-Oriented Pro-

gramming (AOP) paradigm was implemented. This is the first time that AOP has

been used to successfully integrate a collaborative editing framework into an existing

editing application. This thesis argues that using AOP and concentrating on the ap-

plication's data model instead of an application, operating system or GUI library

API, should reduce the effort of implementation.

223

This is because it simplifies the process when integrating a collaboration framework

into an existing single-user application. The proof of concept prototype that was de-

veloped in this thesis, shows that the effort involved was within a practical and

efficient time scale.

8.2.1. Summary of achievements

A framework is developed that enables synchronous collaborative editing of XML

documents, supports different awareness mechanisms and allows XML applications

to be extended with the collaborative editing feature. Specialised editors for any kind

of XML document type (e. g. SVG, X3D, DocBook) can use the framework to enable

them to work collaboratively on documents. The framework is called Collaborative

Editing Framework for XML (CEFX).

Outcomes which have contributed to this thesis are as follows:

" An analysis of XML document structures was conducted.

" An equation for the conflict probability for collaborative editing of binary trees

was developed.

" Static and dynamic simulations of the conflict probability applied to collaborat-

ive XML editing were devised.

"A flexible consistency maintenance algorithm for XML documents supporting

optional locking of document parts was developed.

"A flexible plug-in architecture enabling developers to extend CEFX with new

awareness widgets, concurrency control mechanisms and conflict resolution

schemes was developed.

"A new framework integration concept based on the Aspect-Oriented Program-

ming (AOP) paradigm was implemented.

224

The collaborative editing framework for XML documents presented in this disserta-

tion has a lot of potential for future developments. Real-time collaboration is only

one possible application area. Another possible application area is, for example, the

data integration of information systems such as Product Data Management (PDM)

and Product Lifecyle Management (PLM) systems into authoring applications. A

great challenge of the data integration is how to reduce the effort of connecting a

proprietary authoring system with an information system. The aspect-oriented pro-

gramming approach in combination with standard data formats based on XML - as

described in this dissertation - could be a solution to this problem.

8.3. Future work

Collaborative editing systems is an area with many challenging issues that need to be

resolved. The work presented in this thesis can be used as a foundation for the future

research in XML based collaborative systems. Concerning the future development

of CEFX, the following topics (that go beyond the scope of this thesis) have been

identified for future investigation:

"A very important issue for the broad user-acceptance of a collaborative real-time

editing systems is privacy support. An application should let the user decide,

what of his activities others users are allowed to see. This can be achieved by

awareness widgets that support masking of another user's activities. Only if the

user is willing to show his activities can they be seen by others. In that case, the

part of the document the user is working on must be locked by the user. This al-

lows a certain amount of privacy that is often desired but does not exist in

collaborative applications today. The desire for privacy also has an economical

background. Consider an environment such as the automotive industry, where

many different companies (subcontractors and suppliers) work together on a

large document; for example an electrical circuit diagram for a new car. If the

companies were using a collaborative editor which does not support privacy,

everyone could see how a subcontractor works. That means others could retrieve

knowledge of secret business information that is vital for the subcontractor to

stay competitive. Future collaborative real-time editing systems that are to be

used in a professional environment therefore, require some way of privacy sup-

225

port in order to become accepted by the users of such a system. CEFX supports

optional locking of document nodes which could be used as the basis for privacy

support. The next step would be to investigate how the changes that are per-
formed by one user on a locked node can be hidden to the other users working

on the same document.

0 Group undo is an often required feature in a group editor, allowing a user to

undo, not only his own operations, but also the operations of other users in an

editing session. Group undo could be transparently applied in CEFX for ex-

ample by providing a new widget that allows to view the operations in the

history buffer and select one ore more of them for undo. The undo command in

this case would generate a new operation which has the exactly inverted effect

of the operation to be undone. This requires that operations are invertible as it is

the case with CEFX. Applying such a functionality would not require any

changes in the concurrency control algorithm of CEFX.

" In the CEFX proof of concept prototype an SVG graphics editing application

was extended. In the future, more and other types of applications should be ex-

tended using CEFX. This will help to find limitations of the framework and to

improve it.

0 The current implementation of the CEFX server only supports one editing ses-

lion at a time. This may be enough for a prototype implementation but makes it

unsuitable for use in a professional environment. A future task will be to extend

the server software so it will support many collaborative editing sessions at a

time.

" The currently implemented default awareness widget notifies the user of an

event by using text messages. This awareness widget could be improved with a

more meaningful visualisation of the awareness event. An additional future task

will be to develop other supportive awareness widgets.

0 The documents that are edited using CEFX are stored at the server site in the

local file system. A future task could be to integrate a version control systems in

the server, which supports the retrieval of a version of a document at any time

after an editing session ended.

0 When storing a document locally at a client site from the editing application, the

226

UUIDs are still contained. They should be removed by the framework before

storing. The documents in the cEFxRepository do not change when edited, only

the files in the ClientTempRepository change. The client should write the cur-

rent version of the documents to the CEFXRepository as well, when it

disconnects.

227

References
Baecker, M. R., Nastos, D., Posner, I. R., Mawby, K. L. (1993). The User-Centred Iterative Design of

Collaborative Writing Software. San Francisco, CA, USA. Morgan Kaufmann, pp. 775-782.

ISBN 1-55860-246-1.
Begole, J. M. A. (1999). Flexible Collaboration Transparency: Supporting Worker Independence in

Replicated Application-Sharing Systems. PhD Thesis. Virginia Polytechnic Institute and State

University, Blacksburg.

Berners-Lee, T., Fielding, R., Frystyk, H. (1996). Hypertext Transfer Protocol - HTTP/1.0. RFC 1945.
Retrieved July 15,2007 from: http: //www. ietforg/rfc/rfc1945. txt.

Butterworth, P., Otis, A., Stein, J. (1991). The GemStone Object Database Management System.

Communications of the ACM. Volume 34, Issue 10. ACM Publishing, pp. 64-77.

Chen, D. (2001). Consistency Maintenance in Collaborative Graphics Editing Systems. Brisbane.

PhD Thesis. Griffith University.

Chen, D. (2001). REDUCE - REal-time Distributed Unconstrained Collaborative Editing System.

Retrieved July 15,2007 from: http: //www. cit. gu. edu. au/-scz/projects/reduce/.
Davis, A., Sun, C., Lu, J. (2002). Generalizing Operational Transformation to the Standard General

Markup Language. New Orleans, Lousiana, USA. ACM Press, pp. 58-67. ISBN 1-58113-560-2.

Davis, A. H., Sun, C., Lu, J. (2001). Collaborative Editing ofXML Documents -An Operational

Transformation Approach. Retrieved July 15,2007 from:

http: //www. research. umbe. edu/-jcampbeUGroupOI/Davis-iwces3. pdf.
Dourish, P. (1997). Extending Awareness Beyond Synchronous Collaboration. Retrieved July 15,2007

from: http: //www. ics. uci. edu/-jpd/publications/chi97-awareness. htmi.

Ellis, C. A., Gibbs, S. J. (1989). Concurrency Control in Groupware Systems. Portland, Oregon,

United States. ACM Press, pp. 399-407. ISBN 0163-5808.
Fidge, C. J. (1991). Logical Time in Distributed Computing Systems. Los Alamitos, CA, USA.

IEEE Computer Society, pp. 28-33. Volume 24, Issue 8. ISBN 0018-9162.

Franaszek, P. A., Robinson, J. T., Thomasian, A. (1992). Concurrency Control for High Contention

Environments. New York, NY, USA. ACM Press, pp. 304-345. Volume 17, Issue 2.

ISBN 0362-5915.
Galli, R. (2000). Data Consistency Methods for Collaborative 3D Editing. Palma de Mallorca, Spain.

PhD Thesis. Universitat de les Illes Balears.

Galli, R., Luo, Y. (2000). MU3D: A Causal Consistency Protocol for a Collaborative VRML Editor.

Monterey, California, USA. ACM Press, pp. 53-62. ISBN 1-58113-211-5.
Gawlick, D. (1985). Processing "Hot Spots" in High Performance Systems. San Francisco, California,

USA. Springer Verlag, pp. 249-251. ISBN 0-8186-0613-4.

Gleeson, B. et al. (2000). A Framework for IP Based Virtual Private Networks - RFC 2764.

Retrieved July 15,2007 from: http: //www. ietforg/rfc/rfc2764. txt.

228

Grudin, J. (1994). Groupware and social dynamics: eight challenges for developers. Communications of

the ACM. Volume 37, Issue 1. ACM Press, pp. 92-105.

Guenther, J., Hörich, F. (2007). Collaborative Engineering: Direct Data Integration, an option for the

collaboration with suppliers. Wolfsburg. Presentation at the ProStep iVIP Symposium 2007.

Gutwin, C., Roseman, M., Greenberg, S. (1996). A Usability Study ofAwareness Widgets in a shared

Workspace Groupware System. Boston, Massachusetts, USA. ACM Press, pp. 258-267.

ISBN 0-89791-765-0.

He, F., Han, S., Wang, S. et al. (2004). A road map on human-human interaction and fine function

collaboration in collaborative integrated design environments. Xiamen, China.

Springer Verlag, pp. 59-65. ISBN 0-7803-7941-1.

Ignat, C., Norrie, M. (2002). Tree-based model algorithm for maintaining consistency in real-time

collaborative editing systems. New Orleans, Louisiana. IEEE. IEEE Distributed Systems Online.

ISBN 1541-4922.

Ignat, C., Norrie, M. (2003). Customizable Collaborative Editor Relying on treeOPTAlgorithm. Helsinki,

Finland. Kluwer Academic Publishers, pp. 315-334. ISBN 1-4020-1573-9.

Imine, A., Molli, P., Oster, G. et al. (2003). Proving Correctness of Transformation Functions in Real-

Time Groupware. Helsinki, Finland. Kluwer Academic Publishers, pp. 277-294.

ISBN 1-4020-1573-9.

lonescu, M., Marsic, I. (2000). An arbitration scheme for concurrency control in distributed groupware.

Retrieved July 15,2007 from:

http: //www. caip. rutgers. edu/disciple/Publ ications/cscw2000wces. pdf.

Kung, H. T., Robinson, J. T. (1981). On Optimistic Methods for Concurrency Control. New York, NY,

USA. ACM Press, pp. 213-226. Volume 6, Issue 2. ISBN 0362-5915.

Lamport, L. (1978). Time, clocks and the ordering of events in a distributed system. New York, NY,

USA. ACM Press, pp. 558-565. Volume 21, Issue 7. ISBN 0001-0782.

Lauwers, J. C. (1990). Collaboration transparency in desktop teleconferencing environments. Stanford,

California, USA. PhD Thesis. Stanford University.

Li, D., Li, R., Yu, Y. et al. (2003). Using Familiar Single-User Editors for Collaborative Editing.

Hawaii. IEEE Computer Society, p. 10. ISBN 0-7695-1874-5.

Lu, J., Li, R., Li, D. (2004). A state difference based approach to sharing semi-heterogeneous single-user

editors. Retrieved July 15,2007 from: http: //dsonline. computer. org/portal/Cms-docs-dsonline/
dsonl ine/topics/col laborative/events/iwces-6/Lu. pd f.

Molli, P. Skaf-Molli, H., Oster, G., Jourdain, S. (2002). Sams: Synchronous, asynchronous,

multisynchronous environments. Rio de Janeiro, Brazil. IEEE, pp. 80-84. ISBN 85-285-0050-0.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations. Algorithmica.

Volume 1, Issue 1. Springer Verlag, pp. 251-266.

Nauer, P. et al. (1963). Revised Report on the Algorithmic Language ALGOL 60. The Computer Journal.

Volume 5, Number 4, pp. 349-367.

Peinl, P. (1987). Synchronisation in zentralisierten Datenbanksystemen. Informatik-Fachberichte.

229

Springer-Verlag, p. 227.

Raynal, M., Singhai, M., et al. (1996). Logical Time: Capturing Causality in DistributedSystems.

IEEE Computer. Volume 29, Issue: 2. IEEE, pp. 49-56.
Ressel, M., Nitsche-Ruhland, D., et al. (1996). An integrating, transformation-oriented approach to

concurrency control and undo in group editors. Boston, Massachusetts, USA. ACM Press,

pp. 288-297. ISBN 0-89791-765-0.

Rosenkrantz, D. J., Steams, R., Lewis, P. (1978). System Level Concurrency Control for Distributed

Database Systems. New York, NY, USA. ACM Press, pp. 178-198. Volume 3, Issue 2.

ISBN 0362-5915.
Suleiman, M., Cart, M., et al. (1997). Serialization of Concurrent Operations in a Distributed

Collaborative Environment. Phoenix, Arizona, USA. ACM Press, pp. 435-445.

ISBN 0-89791-897-5.

Sun, C., Chen, D. (2002). Consistency maintenance in real-time collaborative graphics editing systems.

New York, NY, USA. ACM Press, pp. 1-41. Volume 9. ISBN 1073-0516.

Sun, C., Ellis, C. (1998). Operational Transformation in Real-Time Group Editors: Issues, Algorithms,

andAchievements. Seattle, Washington, USA. ACM Press, pp. 59-68. ISBN 1-58113-009-0.

Sun, C., Jia, X., et al. (1998). Achieving Convergence, Causality-preservation and Intention preservation

in Real-time Cooperative Editing Systems. ACM Press, pp. 63-108. Volume 5, Issue 1.

ISBN 1073-0516.

Sun, C., Yang, Y., Zhang, Y., Chen, D. (1996). Distributed concurrency control in real-time cooperative

editing systems. Singapore. Springer Verlag, pp. 84-95. ISBN 3-540-62031-1.

Vidot, N., Cart, M., Ferrie, J., Suleiman, M. (2000). Copies convergence in a distributed real-time

collaborative environment. Philadelphia, Pennsylvania, USA. ACM Press, pp. 171-180.

ISBN 1-58113-222-0.
Xia, S., Sun, D., Sun, C. et al. (2004). Leveraging single-user applications for multi-user collaboration:

the Co Word approach. Chicago, Illinois, USA. ACM Press, pp. 162-171. ISBN 1-58113-810-5

Bibliography
Arciniegas, F. (2002). XML Developer's Guide. Poing: Franzis. 600 pages. ISBN 3-77237-703-3.

Bernstein, P. A., Newcomer, E. (1997). Principles of Transaction Processing. San Francisco:

Morgan Kaufmann. 358 pages. ISBN 1-558604-154.
Bernstein, P., Goodman, N., Hadzilacos, V. (1987). Concurrency Control and Recovery in Database

Systems. Munich: Addison-Wesley. 370 pages. ISBN 2-01107-155.

Date, C. J. (2003). An Introduction To Database Systems. Munich: Addison-Wesley. 1024 pages.
ISBN 3-21197-844.

230

Haerder, T. (2001). Datenbanksysteme: Konzepte und Techniken der Implementierung. 2. Edition. Berlin:

Springer Verlag. 580 pages. ISBN 3-540-65040-7.

Kernigham, B. W., Ritchie, D. M. (1988). The C Programming Language. Prentice Hall. 274 pages.

ISBN 0-13-110362-8.

Landau, D. P., Binder, K. (2000). A Guide to Monte Carlo Simulation in Statistical Physics. Cambridge:

Cambridge University Press. 389 pages. ISBN 5-21653-665.

Michel, Th. (1999). XML Kompakt. Eine Einführung. Munich: Carl Hanser. 240 pages.

ISBN 978-3446218246.

Van der Vlist, E. (2003). XAIL Schema. Cologne: O'Reilly. 448 pages. ISBN 3-89721-345-1.

Walmsley, P. (2001). Definitive XML Schema. London: Prentice Hall PTR. 560 pages.
ISBN 1-30655-678.

Wyke, It, Watt, A. (2002). XAfL Schema Essentials. New York: Wiley. 304 pages. ISBN 4-71412-597.

Glossary
AC - The Awareness Controller component.

ACCI - The Abstract Concurrency Controller Implementation.

ADSL -Asynchronous Digital Subscriber Line. A data communication technology.

AOP - Aspect Oriented Programming.

AOSD - Aspect Oriented Software Design.

API - Application Programmer's Interface.

AW - The Awareness Widget component.

BNF - Backus Naur Form.

CAD - Computer Aided Design.

CC - The Concurrency Controller component.

CD - Character Data.

CEFX - Collaborative Editing Framework for XML.

CMAX - Consistency Maintenance Algorithm for XML.

COV - Concurrent Operations Vector.

CRC - Class Responsibility Collaboration Cards.

231

CRH - Conflict Resolution Hint.

CRHM - Conflict Resolution Hint Map.

CRM - Customer Relationship Management.

CRP - Conflict Resolution Provider.

CRS - Conflict Resolution Scheme.

CSCW - Computer Supported Cooperative Work.

CSV - Character Separated Values.

CTS - Conflict Type Specification.

CVS - Concurrent Versions System.

DA - The DOM Adapter component.

DCRP - The Default Conflict Resolution Provider component.

DMCS - Distributed Memory Consistency System.

DNS - Domain Name System.

DOM - Document Object Model.

DSL - Digital Subscriber Line. See ADSL.

DTD - Document Type Definition.

EBNF - Enhanced Bacchus Naur Form.

FIFO - First In First Out.

GUI - Graphical User Interface.

HB - History Buffer.

HTML - Hyper-Text Markup Language.

HTTP - Hyper-Text Transfer Protocol.

ICT - Intelligent Collaboration Transparency.

IDE - Integrated Development Environment.

IP - Internet Protocol.

IPTV - Internet Protocol Television.

ISO - International Standards Organisation.

JAMM - Java Applets Made Multi-user.

JAR - Java Archive.

232

JAXB - Java XML Binding.

JOS - Java Object Serialisation.

JRE - Java Runtime Environment.

JRMP - Java Remote Method Protocol.

JXTA - Juxtapose. Java Based Peer-To-Peer framework.

LAN - Local Area Network.

MIME - Multi-purpose Internet Mail Extensions.

NAT - Network Address Translation.

NC -Network Controller component of CEFX.

OASIS - Organisation for the Advancements of Structured Information Standards.

P2P - Peer-To-Peer.

PDA - Personal Digital Assistant.

PDM - Product Data Management.

PLM - Product Live cycle Management.

RCO - Resolvable Conflict Operations.

RFC - Request For Comment.

RMI - Remote Method Invocation.

RTCE - Real-Time Collaborative Editing.

RTS - Read Timestamps.

SCP - Session Control Protocol.

SGML - Standardised General Mark-up Language.

SMUX - Multiplexing Protocol.

SV - State Vector.

SVG - Scalable Vector Graphics.

SVS - State Vector Swapping.

TA - Transparent Adaptation.

TCP - Transmission Control Protocol.

UDP - User Datagram Protocol.

URI - Universal Resource Locator.

233

UUID - Universally Unique Identifier.

VDSL - Very High Speed Digital Subscriber Line. See ADSL.

VNC - Virtual Network Computing.

Vol? - Voice over Internet Protocol.

VPN - Virtual Private Network.

VRML - Virtual Reality Modelling Language.

W3C - World Wide Web Consortium.

WDL - Wait Depth Limited.

WebDAV - Web-based Distributed Authoring and Versioning.

Wiki - WikiWiki (Hawainese for quick, quick). A collaborative website system.

WTS - Write Timestamps.

WYSIWID - What You See Is What I Do.

WYSIWIS - What You See Is What I See.

X3D - Extensible 3D.

XHTML - Extensible Hyper-Text Markup Language.

XML - Extensible Markup Language.

234

Appendix

Detailed class diagrams

The following class diagrams show in detail the classes of the dynamic simulation

software from chapter 2.4. The classes shown here correspond to the classes shown
in figure 2.15.

XM LDoc u mentC reatorFaetory

Icý"ae
.

Logge" = L: 3De' getLcgge

mir Numce-: fElements int =0

isxNumce" ; fEle rents int =0

"msxNu nceJfAttricutesPe"Element Int =
m intumae, CfAttrioutesPe'Element int =0
^msxHier9%chyCecth int =0

minHie, 9, chyDerth int =0

9xNumce": fReferenoes int =0

-ninNumce-fReferenoes in', =3
LTD String =

inited coo lean = fslse

_t.
1LCoa rertvrestorFsctory",

ietNu rcer; 7fElerrerÜlirt, irt, clc

setHerard'yCepth; irt, irtý vcic
void

DrEsteXr. cLCca rrert; i XMLCoa inert
irM: fy E; lr St LCSUre: X ý1L000 mer'tNOQE, XNILCc . -rertNoce&-*, J. fLCccL-c-r:! v--<3E

: 91L; IsteEIen- rtsF'erHier9rchy'Le eIIIrt, irt) IrtC

21CL19tEHIErs, cPy"LEVEICepEraertF9d6rs(ortý, float[

- dE[H IE'8rd'y'CEFLh; RESOLrp@Bl, no 1¬ voic

aett4urrce"rf:. tt, irUtesFerElerrert! ResouroeBunoleý vela

getNJurrt: er, -ýfEI-_"r'erts; ResouroeBuraIej void

aetRefe"eroe5: Re5airoaBundlej vela

-sir; St ird' ý vcio

arty get

tletCTC'F_;: L'oeBLrole- oclc

voPe ty ; ct

setCTC: Stiir;, vClo

UUIDGeneratoº

IsStld int =0

UUICGererstor'

ner¬rstE10;, art

reset!, v-- i--

Figure A. 1: XMLDocumentCreatorFactory and UUIDGenerator classes

235

Em pi ri ca I MonteCarlo Simulation

- cl-Er:. _TCP int = 4K
- bSERFACTCP int=2

- USEPT17.1ES int =1
- td; DETI7. IES int ='3

- PEFEATIONTIt. 1ES nt = 1003
- inUses int

^-s. xUsers int
f xUsers int

minUserDelsy int

nsxUserDelay int
fixUserDelay int

minD e aticnDelsy n!

msx3ceraticnDelay i-,
fiYOperaticnDelsy int

minNet., kBandwith int

- n9xNetticI(Bsnd-oith int
I ix Net. tic"(Bsnd vith nt

E^'CiriCaR. lprteSarlaSirýl_acý

det llc.. veaOp¬'stl: rs FE, oeE e=
it8'tslrr'Llatl ir.

.
=1:

i rLI8te; lrt, Irti 1-'

ýc J9tET'¬¬ . CýJ

RandomCalculator

logge, Laa9e"=Lo"a9e aetL
"n dm Rynoom = naa Rsndcm , ý°_

sIa IsteFsroc LtirF, isxlrt; irt, irt;, in

Figure A. 2: EmpiricalMonteCarloSimulation and RandomCalculator classes

236

SimulationController

",, T"e-. 1s-si z_

mexWetscl(B9nositn int =3

minNetworkBandwith: int = DO

nax0owationDelay int

minOoe+ationDeIs -=
users Collection
caetationSets List

= xmlDoaument Xh. 1L:: : w- e

o ResowoeBundle
testMac Hasht lec = new Hs-t 13c

cgga, Lc-. - = L: - - e'; e c33=

+ , EttJý -cE ýfLsE'i art
- aEiGLnErtiJL^'LE'ýý'fE IE'^Er S i^'

- SlrrLlati 'Cort": IIE''

- Irlt; ý VOID

- IritLrSei;,, void

get veratiorSets; i vcio

d ettetwo*. B a rd vV icth .

a etOperatiorCelsy; j vcio
ardomMsxMir FixVaIie: _'ir,

testAooess: Lsery void
rextNooe;, XMLCocumentt4ooe

rextOpereti or; .I Operati or
u pdateTree;) Vold

- &eckOutrlodeFx'Jperatior: tr: IL; E r. LC a err e
: ccle=^ filltyooeLaäList; XrýILCoa, rrertryooe IL>er List.

- ealrtý e in J. ILCca. rrertNcc¬ ILSE' cc

, rlc Nc-oe; ýF.! LCoa ^rertNc- IL- coo

Figure A. 3: SimulationController class

237

Tree Visualizer

- 3: _ -J. ILL um=
f3=o int = 13

mcdeTscle Lit =

; f3c; tor int = '.

ncdesize int =
h "iýýntalcas '
hie"9"thy int =
1oa"3er: Logge = ýc3ýe''= sae

_ rcnito, �nject
- text String = f"s-_

f-9-ne. JFra"ne

_
Canvas

Fsmerate. long

JÄ int=2

m:, edelay long

icr int=?

n: tended ..: clear _ . ',, e
r int=0

y int=0

9. Jdcnn. int = ut
9dd--nY int= u: Y

-T ec'o`i; i, slize"'irt it

- rrt: void

- ýCOateTree; XMLCca. -giert.
3"9, +Tree; List, C-rapl-ic: s. l odic

etf. taxtJýmberýflJýes; Listj ir"
filITacIE Lrt in ÄMLC3arrerch: ýe _

- ra. vtýcoe: ',., I. ILCaa n ertý: c-ae s acres

- -rair': Stir, " vcio

Figure A. 4: TreeVisualizer class

238

XMLDocument

" CTC Sri-ý _ -LILCcanEnt: TC
xmlDccu er: r; cd¬ r'lLCc; u n¬ntNcae

- metaData hasp

nodeList. List
initialised caclesn = false

age*. Logge, = Lcger.. aetLo-age

-Ec, eNýoE; ýh. tLCccarr rtrraoE cic
- -cveAll; List, , ci--

oetNcoeList;, List

" insertt4oöeAt; XMLCoa., mentleooe, XMLDocumertryooe. irt) void
* innerttJoo-e; XhtLCacumenttiooe; '. void
+ feateXMLCacumertF' o e;. XMLDowmenthlooe
+ g¬tCoa: mertSize; j in
+ XMLCoa, ment: i
+ getXmlCacimentt4oe; ý XMLCocumentNode
+ setXmICoaumerttyooe; XMMLDoasmentNode) void
* setPrope+ty; Strirg. Objedj void

yetRsndomIJc. oe; - XMLCocumertr4oce

- _c
AII; List' voice

- TtrýoýeList; MLCaa menttlode[ýj . void

Figure A. 5: XMLDocument class

239

ConflietLoggw

xnt"clle' SimulaticnCcnt-alle =
numCcnflids Icn3 =3

- logge, Lc"3.3e" = Lo"3gef. 9etLo-a, g'

cumce-; fUse s int =0
log StringBuffe+= new StringBuff-

Io"tFile File = null
filen9me String= testl: a -1

s. - end Sting = xml
initNumElements int
, 'ite" Filei"rite, = null

ýrflidLCyye
lc- --rflld'.: OCjed. :)t, ed c_e=

IcaCcrflid: SLird :)tjed
_-

IaaCorflid: Strir-g cis
firishLodyi"d':

a"reLc, ciz

Figure A. 6: ConflictLogger class

irte face
(User

-A_.. ei boofear

e: ýc;, veibooleor irtefooev
ý; aýEdtiýgi ý'c
3topEdrt, ngi z

fControfler

r; ex; Gperi, oc; iGpe et. or

- checklnNodejrnt. XMLDocuaentNece
ealize. - gerru-e^tkumber, --)fElemerts

- ueaa; e, ee, ._ creaa

AbstractU ser

ocnt"clle" lCcnt---Ile, = null
= s=i: e ccclean = f9Ise V 5H

editing colesn = fslse

"L "=
setCortrolleclCorrclle" ci

L: - - 3e: -:. gee c33e _g3_
iI int =3

+ startEditing: vcic "--iinCelsa t-!
» ; bstractUserl -sxCel9.
+ isActioe; ý bOc esr
+ setActjvelboolear, : "_ý Us, e"

+ stapEditing; j vcio + setCel,; ^:
+i Ecitira cle3
- ; EtEoiti^; :: c+- _ cio =^ -, Stir;
- aetCcr, -cIle" crCClle"

Figure A. 7: User classes and interface and their relation to the IController inter-

face

240

operation

" Celet¬CCE'8ticr

" Inset3cc-stier

Move--c*e ation

" Ope*atiar

Ope"stianSEt

" UGösteope ation

-0 + i0pe stion

C 8'e" .

XMLEditing Simulation

Ic"a"ae' L: e' = Lc-33E" 3EtL ; -a3E
FP"OFEBT r BUNGLE St'in3 = Simulsticn

ýEt: ". l :: a'EO JFE'9: iCr>GES_�'OEELr: I<_ : 1:
eir: 5t ir^ ci

XML Doc u mentNode

lc in"guse-, 1ý; =" = n., ll TagNode
doc xr. lLCc u^i¬nt = null
Iaager. Logger =Lcgge+getLc"a3E - Ts, t.: o. r; J. 'LCcx^cr;.
id i t=O n
cs"ert XMLDocumentNcde = null

- 5tt'inutes Mac = null
nhildren Collection =ull

Texthode

I: ed c_tlesn = fsls
Te tt, coe in ou -Ert

cc -C9reTCI-':)tIeciý in iýLE9f, öOCIE9r

- getühildrer; % CollEChcr

. etChildrer; CollEdicrý --ic Collect, or

detlo; j int XMLNod. Sot
- setAttributes; Mapj vci

5etPorentlXMLDocumertt4c---E- .co list Vectc" = n¬, + `etc- 13
done{j Object

- logger Logger= Lcaae" Lc "e amt aa-
- getHorizortalPosition{j in

- ; etHierard, yFosition.; 7 in - 9oo; Objecr, boclesr
- , F"1LDo wrentt4oüe; int, XF.! LC: a ^ert °

so aAIIICollectior. bccIe9r
@etchildCount(int desr; j void

- getAllo. vsChiloren-; ý boclear cortairrstObled, boolear
I5Le9fjj boolear oontainsAll(Collectior. b6CIE9r

+ : J-Horen;) Erumeraticr isEmptyfl boolear
- y^etFsrent; t TreeNoc¬

- iteratOnj Iteaator

getChildAt{inti Treekcce Ilttlteratoflj Iteratc"

+ jetlr exlTreet$ooel Ir! + llstlterator; lntj lte st: -
- etAttributes: Map + rerrovelObjedt boolesr

3Loded; } boolear + removeAlllColledion) ccclesr
setLodce(Jlboolesr, IL-E-. retsinAll(Collection'i bcclesr

- tcString; y String - sizel int
- rsertChilaiint, Object! vti, toMay{) Object[;

- sodChildlObjed} void - toArraylObject[; 1 Objea;.

'emoveChild(XMLD aºrrer: l.: 0e 010 1MLtiodeSet()
+ oelete;) void XMLNooeSet; Coliectior

co ntsins(XMLDooumentF'ko¬ 0001e9- addlirt rOtjed't boole9^
+ getCocl) XMLDocumert iroex, Df, Otject, art
+ setCoc(XMLCca. mert', . 010 pet; rte Dtject
- getLod r-nUser", ILse-

Figure A. 8: Node classes and their relation, the operation package and

the XMLEditingSimulation class

241

Published research papers

The following pages contain the research papers in the same order as the references
below, in their original form, that were published and presented at different confer-

ences during the course of this research.

" Transparent Extension of Single-User Applications to Multi-User Real-Time

Collaborative Systems - An Aspect Oriented Approach to Framework Integ-

ration. Proceedings of the 9" International Conference on Enterprise

Information Systems - ICEIS 2007. Funchal, Portugal 2007, pp. 327-334.

ISBN 978-972-8865-91-7

9A Framework for Real-Time Collaborative Engineering in the Automotive In-

dustries. Lecture Notes in Computer Science (LNCS 4101). Proceedings of

the 3. International Conference on Collaborative Design, Visualization and
Engineering. Mallorca, Spain. Springer Verlag 2006, pp. 164-173, ISBN 3-

540-44494-7

" Extending existing single-user applications with collaborative functionality

using the Collaborative Editing Framework for XML (CEFA9. (Erweiterung

bestehender Anwendungen um kollaborative Funktionen mit Hilfe des Col-

laborative Editing Framework for XML (CEFX)). In Proceedings of the dolT

Software-Research-Day (Software-Forschungstag). Stuttgart. Oktober 2004.

Fraunhofer IRB Verlag 2005, pp. 150-165, ISBN 3-8167-6715-X

242

TRANSPARENT EXTENSION OF SINGLE-USER
APPLICATIONS TO MULTI-USER REAL-TIME

COLLABORATIVE SYSTEMS
An Aspect Oriented Approach to Framework Integration:

Ansgar R. S. Gerlicher
London College of Communication, Hochschule der Medien, Stuttgart, Dingelsted: str. 5, Hannover, Germany

a. gerlicherI Gcc. arts. ac. uk

Keywords: CSCW, Groupware, Collaborative Editing, Collaboration Transparency, Software-Architecture, Aspect-
Oriented Programming, XML, Distributed-Systems.

Abstract: This paper discusses the transformation of a single-user SVG editing application into a multi-user real-time
collaborative editing system. The application's extension with collaboration functionality was realized by
using a novel aspect-oriented programming approach to framework integration. This approach is platform
independent, supports heterogeneous applications and does not require an application specific API or access
to the application's source code. The collaboration functionality in this case is provided by the Collaborative
Editing Framework for XML (CEFX) which uses the Document Object Model as a standard interface to the
application's data model.

1 INTRODUCTION

Cooperative work is a day-to-day activity in many
areas. Software development teams cooperatively
develop applications or write documentation. Engi-
neers cooperatively design a circuit diagram or work
together on a 3D model of a new machine. The
documents that are cooperatively edited range from
simple text documents over 2D graphics to complex
3D models.

However, software support for real-time
group editing in commercial applications today is
uncommon. Thus support for collaboration is often
limited to turn-taking, split-combine and copy-
merge. Existing real-time group editors - derived
from research projects - are usually very specialized
and despite latest achievements in the research field

of Computer Supported Cooperative Work, many
such systems suffer from a lack of user acceptance
in the professional area. One reason for this seems to
be a low motivation of users to learn new user inter-
faces and application functions if they can not see
their personal benefit in the collaboration features

(Grudin, J., 1994). Another reason may be that exist-
ing real-time group editors generally can not com-
pete with established single-user editors regarding
the functionality and usability (Xia, Sun et al. 2004).

A more promising approach therefore is to
extend accepted single-user editing applications with
collaborative real-time editing functionality. The
difficulty with this approach is to extend an applica-
tion transparently (that is without modifying the ap-
plication's source code) with as little effort as possi-
ble and at the same time providing the best support
for real-time collaboration.

Systems for application sharing such as VNC,
NetMeeting or Netviewer allow sharing the view of
any single-user application among a group of users.
These systems are application independent and ap-
plication transparent. The effort to share an applica.
tion is very little, but they only support strict
WYSIWIS. Independent user interaction on the
shared document or application is not supported.

A number of research projects investigated in
how to transparently extend single-user applications
with collaborative editing functionality (Xia, Sun et
al., 2004, Li, Li, Yu and Yang, 2003, Begolc, 1999).

Their approaches support real-time collaboration and
relaxed WYSIWIS. However, these approaches ei-
ther depend on an application's programming inter-
face (API) or require translating operating system
events into meaningful editing operations. This is
labour intensive and the integration code has to be
rewritten for each new application that is to be ex-
tended.

In this paper, we propose a novel approach to
extending a single-user application with collabora-
tive real-time editing functionality. Our approach
supports relaxed WYSIWIS and heterogeneous ap-
plications. An application is thereby extended with-
out modification of the source code and without be-
ing dependent on an application API or on operating
system event translation. Our approach only assumes
a standard interface to the applications data model
and a runtime environment that supports introspec-
tion. We use the functionality of the Collaborative
Editing Framework for XML (CEFX) in order to
extend an application (Gerlicher, 2006). CEFX,
among other things, takes care of synchronising the
shared document. This paper discusses how we ap-
plied the concepts of aspect-oriented programming
(AOP) in order to integrate CEFX into an existing
single-user editing application.

The paper is structured as follows. In the next
section, the different approaches of recent research
projects are discussed and compared with our ap-
proach. Section 3 discusses our approach, the CEFX
software architecture, the implementation and how
awareness support can be achieved. Section 4 dis-
cusses the requirements for this approach and then
conclusions are drawn in the last section.

2 RELATED WORK AND GOALS

Xia, Sun et al. propose the Transparent Adaptation
(TA) approach for the extension of single-user ap-
plications with collaboration functionality (Xia, Sun
et al., 2004). In CoWord, they have extended the
Microsoft Word application transparently by making
use of the Microsoft application and execution envi-
ronment APIs.

The TA approach requires each application to be
adapted before being shared. The adaptation of an
application requires the developer to have a detailed
knowledge of the application and execution envi-
ronment specific API. Additionally an interpretation
of the user actions in relation to the current applica-
tion contexts is required. Operational Transforma-
tion (OT) (Chen, Sun et al., 1998) is used for the
concurrency control of a shared Word document.

This requires to map each operation executed on the
application's data model into an operation that can
be processed by the OT concurrency control mecha-
nism. This is the responsibility of the Collaboration
Adapter in CoWord. However, mapping user actions
to OT operations can become complex and requires
that the application's data model supports positional
addressing of objects, which may not be feasible for
complex 3D modelling applications. These limita-
tions of CoWord are not inherent to the OT ap-
proach, but to come from the design choices made
concerning the integration of concurrency control
into an application.

A similar approach is proposed by Li et al. called
Intelligent Collaboration Transparency (ICT)
(Li, Li; Yu and Yang, 2003). The focus of their work
is on sharing heterogeneous applications of the same
application family. They propose a system that al-
lows extending single-user applications such as
GVim and MS Word. For each application a so
called ICT agent is implemented that captures events
from the operating system and the application, trans-
lates them into semantic operations and then trans-
mits those to the other collaborating sites, where the
events are replayed in the form of a sequence of
editing events. Their event capture and replay
mechanism makes intensive use of application and
operating system specific APIs and thus suffers from
the same problems as the TA approach in terms of
implementation complexity. Additionally the
complexity is increased by supporting heterogeneous
applications. This requires a formalisation of
application semantics in order to be able to translate
the user actions of one application to the relating
user actions of another application.

The high implementation effort was one of the
reasons for the second generation of the ICT project,
ICT2. In contrast to their previous work, ICT2 does
not attempt to intercept and understand the operating
system level events. Instead it uses an adapted ver-
sion of the diffing algorithm (Myers, 1986) to derive
the editing sequences between document states (Lu
and Li, 2004). However, this new approach is not
suited for fine-grained real-time group editing such
as TA and ICT, because of its limitations in terms of
performance. The support for heterogeneous
applications is limited to those applications that have
the same writing style. Sharing a document between
for example Latex and Word is not supported. The
diff algorithm that is applied supports determining
the differences of text documents only. In order to
support structured and formatted documents, more
sophisticated diffing algorithms would be required
(Li and Lu, 2006).

Begole (Begole, 1999) proposes a different ap-
proach. The Flexible JAMM (Java Applets Made
Multi-User) project extends a single-user application

by replacing selected components of it with multi-
user versions. The basic idea of this approach is not
to use an application or operating system specific
API for the integration of collaboration function, but
the Java Swing API. This has the advantage that the
components which are replaced are well known and
it is not required to implement a translation layer as
in the TA approach or convert user actions into ap-
plication semantic commands or API calls as in ICT.
The disadvantage is that the set of applications that
are suitable for an extension is restricted to Java
Swing based applications.

To summarise, all approaches use a certain API
in order to extend a single-user application. TA and
ICT both use an API on operating system and on
application level. JAMM uses an API on the level of
the runtime's graphical user interface (GUI) library.
The first two approaches face the problem of im-
plementation complexity for each new application
that is to be extended. The JAMM approach has the
problem of being dependent on the fulfilment of
certain runtime requirements.

The goal of our approach is to reduce the com-
plexity of integrating a collaboration framework into
a single-user application and provide a solution that
is more general, supporting many different types of
applications. We argue that this can be achieved by
using aspect-oriented programming and concentrat-
ing on the application's data model instead of an
application, operating system or GUI library API.

The application data model describes how data is
represented and used. For example in a text editing
application, the data model represents the text that is
edited. The structure of the data model can thereby
be different to its visual representation. One aspect
of an application is the manipulation of the data
model. The code for updating or querying the data
model can be distributed within the entire applica-
tion. In the terminology of AOP such aspects are
called crosscutting concerns. In our approach, we
identify these crosscutting concerns or system-level-
concerns within an application and define advices
that then create events for the underlying collabora-
tion framework in order to synchronise the data
model between the different sites. This has the ad-
vantage that once developed advices can be reused
for all applications that use the same methods for the
manipulation of their data model. This is for exam-
ple the case for all applications using the Document
Object Model (DOM) as a standard interface for the
manipulation of XML content. Although new ad-
vices have to be developed for applications that use
other methods for the data model manipulation, we
assume that the implementation effort is low com-
pared to other methods.

3 THE AOPAPPROACH

For extending a single-user application with collabo-
rative real-time editing functionality, the Collabora-
tive Editing Framework for XML (CEFX) was used.
CEFX is a collaborative real-time system specialised
on XML based applications. It satisfies the collabo-
rative requirements of communication, group
awareness, session management and concurrency
control (Pichiliani and Hirata, 2006).

We selected the GLIPS Graffiti editor (GLIPS
Graffiti Editor) as single-user application for the
transparent integration of CEFX. The CLIPS Graffiti
editor is a cross-platform SVG graphics editor de-
veloped by ITRIS (ITRIS). It enables to create regu-
lar SVG files. As GLIPS is a Java application, it was
necessary to use an aspect-oriented extension to the
Java programming language. We used AspectJ for
the development of the required aspects.

Aspect-oriented programming (AOP) is a pro-
gramming paradigm for the separation and encapsu-
lation of concerns, especially crosscutting concerns,
within a software. The most popular AOP language
is Aspect) (The Aspect) Project), developed by
Gregor Kiczales et al. at Xerox PARC (PARC).

In order to encapsulate crosscutting concerns at
one place, so called aspects are defined which are
then integrated into the software not earlier then at
compile time. Using AOP implementations that sup-
port byte-code weaving (Aspect)), allows to extend
applications without access to their source code. An
aspect can alter the behaviour of the base code (the
non-aspect part of a program) by applying advices
(additional behaviour) at various join points (points
in a program) specified in a quantification or query
called a pointcut (that detects whether a given join
point matches). An aspect can also make binary-
compatible structural changes to other classes, like
adding members or parents. (Aspect-oriented pro-
gramming).

The following section describes the relevant
parts of the CEFX software architecture. Section 3.2.
discusses the implementation of the advices and in
section 3.3 the integration of awareness mechanisms
is discussed.

3.1 Software Architecture

CEFX is based on a hybrid software architecture,
which is a mixture of a centralised and a replicated
architecture. The central server side is responsible
for the session handling and management of the
shared documents. When a client connects to the
server in order to work on a certain document, the
server checks if a session for that requested docu-
ment is already open and connects the client to it.

The client then retrieves a copy of the shared docu-
ment from the server. Each operation that is exe-
cuted at a client site is executed locally first and then
propagated to each other client in a session and to
the server site. This guarantees good response times.

CEFX is composed of a set of plug-in compo-
nents that are responsible for the different aspects of
a collaboration system. The flexible plug-in architec-
ture of CEFX supports the extension of the frame-
work itself by providing new plug-in components.
The figure below depicts a simplified model of the
internal structure of the client part of CEFX.

Figure 1: CEFX client components

The CEFX Controller is the central controller com-
ponent of the framework. It owns a Extension Regis-
try (ER) which contains information on plug-in
components that need to be instantiated. The CEFX
Controller processes all framework events and dele-
gates them to the corresponding components.

The Network Controller (NC) is responsible for
sending and retrieving information over the network
The Concurrency Controller (CC) at each client and
the server site takes care of the synchronisation of
the shared documents and handles conflicts. The
concurrency control algorithm used was specifically
developed for the synchronisation of XML docu-
ments. It follows the same principles of causality
and convergence as the algorithms described in
Davis, Sun et al., 2002, Ignat and Norrie, 2002 and
Molli et al. 2002. In contrast to the discussed sys-
tems, universal unique ids (UUIDs) are used for ad-
dressing nodes and operational transformation is not
applied for preserving user intentions. However, a
detailed explanation of the used consistency mainte-
nance algorithm in CEFX goes beyond the scope of
this paper.

In the case of a conflict the Conflict Resolution
Provider (CRP) provides hints to the concurrency
controller on how the conflicting operations should
be treated.

Furthermore each client site has an Awareness
Controller (AC) that is responsible for the propaga-

tion of awareness events, such as mouse selection
events. It delegates awareness information to the
corresponding awareness widgets which are respon-
sible for the visualisation of these events.

The CEFX DOM Adapter (DA) is our entry
point to the framework. At the beginning of each
collaborative session, when a document is opened by
the user, the DA is provided with a reference to the
Document Object Model (DOM) of the application.
This is done by one of the advices that are called if a
certain join point within the application is executed.
For each local modification of the DOM, the DA
creates an operation which is then executed and
propagated to the other sites. Incoming operations
are - after passing different synchronisation steps -
eventually executed directly on the DOM of the ap-
plication, as if they were executed locally by a user
action.

3.2 Implementation

When extending the GLIPS Graffiti editor, the
crosscutting concerns that we were interested in is

the modification of the applications data model. The
first step was to identify the relevant join points that

are executed, when the data model is modified. User

operations such as drawing a line, changing the col-
our of an object or deleting a object modify the ap-
plications data model.

The GLIPS Graffiti editor is used to create and
edit Scalable Vector Graphics (SVG). As SVG is an
XML document format, GLIPS uses an XML docu-
ment internally as data model. For the modification
of the XML document, GLIPS makes use of the
DOM API. For rendering the SVG graphics to the
screen, the Apache Batik library is used (Batik SVG
Toolkit). Batik provides its own implementation of
the DOM which complies to the W3C Document
Object Model specification (W3C Document Object
Model).

This simplified the identification of the relevant
join points. All calls to functions defined by the
W3C DOM API were possible candidates for a rele-
vant join point.

The next step was to write an Aspect class that
encapsulates the crosscutting concerns at one place.
The Aspect class is similar to a Java class and can
contain normal Java code and additionally AspectJ

components. A simple example:

public aspect DOMAccessAspect {

}

The defined Aspect is then weaved into the applica-
tions bytecode at compile time. The applications
source code is not modified. The Aspect class de-
fines point cuts that are executed by Aspect) when
the matching join points are reached within the ap-
plication.

We identified calls to the following W3C DOM
API methods as most relevant to the modification of
the GLIPS data model:

Node appendChild (...)
Node insertBefore (...)
Node removeChild(...)
void setAttributeNS (...)
void setAttribute (...)

The methods appendChild() and insertBe-
fore () are called, whenever a node is added to the
document. This is the case for example if the user
draws a line in the SVG document. The method re-
moveChild () is called, whenever a node is re-
moved from the document. That is the case if the
user deletes an object from the document. The meth-
ods setAttributeNS () and setAttribute () are
called if for example the user changes the colour of
an object. In SVG the colour information of an ob-
ject is contained in the value of the style attribute.

The figure below shows a scenario of what hap-

pens, if for example the colour of an object is

changed. Whenever the method setAttribute ()
on an element node of the XML document is called,
the call is intercepted by AspectJ. Instead of directly

executing the code of the DOM implementation pro-
vided by Batik, the defined pointcut of our aspect
class selects the relevant join point and the specific
advice is applied. The advice then delegates the call
to the DA. The DA creates an update operation
which is handled by the CEFX Controller and asyn-
chronously propagated to all sites of the current edit-
ing session by the NC. The operation is instantly

executed on the local element node and the attribute
value is updated.

Pointcuts pick out interesting join points in the exe-
cution of a program. These join points can be for
example method invocations and executions. An
AspectJ pointcut definition gives a name to a point-
cut. The code snippet below shows how the pointcut
of the above scenario is defined in AspectJ.

pointcut setAttributePC(Element p,
String attr, String value):
target(p) && args(attr, value) a&
call
void setAttribute(String, String))
&ý ! within(DOMAccessAspect);

This pointcut picks out all join points matching a
call to a method with the same signature and pa-
rameters as given in the call () statement. For each
pointcut an advice is defined, that contains the code
that is to be executed if the pointcut is met.
For each of the relevant pointcuts, we defined an
advice. The advice, that is executed for the above
pointcut is shown in the following code snippet.

void around(Element p, String attr,
String value):
setAttributePC(p, attr, value)
{
Advices. setAttribute(p, attr, value)i
}

The static method setAttribute() of the class
Advices is called here. The class Advices is a
helper class containing the advices code. This was
done for clarity reasons and in order to separate the
lava code from Aspectl code. The code that is exe-
cuted here is shown in the following code snippet.

public static void setAttribute
(Element p, String attr,
String value)

{
CEFXDOMAdapter doma
CEFXUtil. getDOMAdapter();
if (doma !- null) {

if(doma. isCollaborationReady())
doma. Element setAttribute(p, attr,
value);
return;

p. setAttribute(attr, value),

Figure 2: Scenario of code interception

First a reference to the CEFXDOMAdapter is re-
trieved by calling the static method getDO-
rmdapter () of the CEFXUtil class, a utility class
provided by CEFX. If the DA is already initialised

and ready for collaboration, the call to setAttrib-
ute () is delegated to the corresponding DA
method. If the DA was not properly initialised, the
setAttribute () of the target object is called di-

rectly, setting the new value to the attribute. This is
done for example, if the client is not connected to a
collaboration session.

For all other relevant pointcuts the same proce-
dure was applied. The following code shows an ex-
ample on how the other advices were defined using
anonymous pointcuts.

Node around(Element p, Element c):
target(p) && args(c) &&
call(Node appendChild(Node)) &&
! within(DOMAccessAspect)
{

return Advices. appendChild(p, c);

Additionally to the advices for the manipulation of
the data model, advices for creating or loading of a
document and the initialisation of the render context
are needed. Creating a new SVG document or load-
ing and parsing of an existing document is handled
by the SAXSVGDocumentFactory class provided
by Batik. Rendering of an SVG document to the
screen is handled by the SVGCanvas class (the ren-
der context) provided by GLIPS. When a document
is opened, the DA is provided with a reference to it,
in order to integrate changes from the remote sites.
After the execution of a remote operation, the render
context of the application is notified in order to re-
paint the document. For this reason, the DA is pro-
vided with a reference to the application's render
context. The following advice code is executed,
when a document is opened by the user.

SVGDocument
around(SAXSVGDocumentFactory fac,
String uri):
target(fac) && args(uri) &&
call(SVGDocument createSVGDocu-
ment(String)) &&
! within(DOMAccessAspect)
{
//Initalisation of the DA

CEFXDOMAdapter da a
new CEFXDOMAdapterlmpl();

//Proving DA with factory reference
da. setDocumentFactory(fac);

//Creating the document and
//providing DA with a reference to it

SVGDocument doc ° (SVGDocument)
da. createDocument(uri);

}

The DA is also provided with a reference to the
document factory. This is required for example, if a
session for the opened document already exists. In
this case, CEFX loads the document from the server
and handles the document parsing and initialisation.

The advice for setting the render context is called
when the svGCanvas is initialised within the appli-
cation. The following code illustrates how this is

achieved.

after(SVGCanvas panel): target(panel)
&& call(* initializeCanvas(*))
{

CEFXDOMAdapter da =
CEFXUtil. getDOMAdapter();
if (da != null) {

da. setRenderContext(panel);

The svGCanvas class is derived from
javax. swing. JlayeredPane and provides a
method initializecanvas (). The advice is exe-
cuted after the initialisation method has been called.
Thus in this case the method call is not intercepted.
The advice is solely used for notifying CEFX of the
initialisation and providing it with a reference to the
render context.

To summarize, using aspect-oriented program-
ming for the integration of CEFX into the GLIPS
Graffiti editor did not require much programming
effort. Only seven advices were needed to provide
GLIPS with the basic collaboration functionality.
Five of the used advices were related to the DOM
API and can be reused for other applications using
the DOM. One advice was specific to the Batik li-
brary and one was specific to the application. The

overall performance of the application did not
change noticeable.

AspectJ is one of many existing implementations

of AOP. In this case for example HyperJ (HyperJ
Overview) could alternatively be used. AOP imple-

mentations exist for many different languages and
platforms such as Java, C#, VB. NET, JavaScript,
C/C++, Lua, Python, Ruby, Perl, PHP, Common
Lisp and many others.

3.3 Awareness Support

The discussed advices are used to integrate CEFX in
a way that satisfies the requirements of communica-
tion, session management and concurrency control.
In order to satisfy the requirement of group aware-
ness, additional effort is necessary.

CEFX provides simple awareness widgets that
allow to notify each user in a collaborative session
for example on other user's mouse movements. This

can help a user to get an understanding of what other
users are working at. The awareness widgets are
little windows, controlled by the CEFX client and
independent of the extended application. The appli-
cation is not aware of those widgets.

For the integration of the awareness support pro-
vided by CEFX into the GLIPS editor, additional
advices can be used. Java applications make use of
certain interfaces from the j ava . awt . event pack-
age in order to retrieve information on mouse clicks
and mouse movements. In the following example we
show how we notified CEFX of a user's mouse
clicks. A new Aspect class containing advices for

mouse events was developed.

public aspect SelectionAspect {

after(MouseEvent event):
args(event) && execution(
void mousePressed(MouseEvent))&&
! within(SelectionAspect)
{

Advices. mousePressed(event);

The above code snippet shows the advice that is

executed when the user presses the mouse button.
The static method mousePressed () of the Advices
helper class delegates the mouse event to the
MouseEventPropagator component of CEFX.

public static void
mousePressed(MouseEvent event)
{

CEFXDOMAdapter da =
CEFXUtil. getDOMAdapter();
if (da != null) {

MouseEventPropagator li =
(MouseEventPropagator)
da. getEventPropagator(event);
if(li! =null)
{
li. mousePressed(event);

The MouseEventPropagator component is regis-
tered with the AC component of CEFX and is re-
sponsible for propagating the mouse events to the
other sites, where they are displayed in the corre-
sponding awareness widgets. The same kind of ad-
vices can be implemented for all other kinds of user
events such as typing the keyboard or mouse move-
ments. Using AOP here allows a transparent integra-
tion of awareness into the application.

4 REQUIREMENTS

AOP implementations are available for a large num-
ber of programming languages and platforms. One

requirement though is that the target application is

written in a language that is supported by AOP. Ad-
ditionally some AOP implementations require re-
compilation of the application's source code in order
to weave the generated aspect code into it. Other
AOP implementations do not require source code.
AspectJ for example supports byte-code weaving
and advanced load-time weaving. This allows using
AOP without access to the application's source
code, which makes it suitable for the extension of
commercial applications.

The integration of CEFX into the GLIPS applica-
tion had the advantage that GLIPS uses the DOM for
accessing it's data model. This simplified the identi-
fication of relevant join points. For applications that
do not use a standard interface for modifying their
data model the identification of the join points may
be more difficult, but still feasible.

It is worth noticing that the support for heteroge-
neous applications in this approach is limited to ap-
plications using the same type of XML document.
The support for real heterogeneous applications (us-
ing different XML document types) is a subject for
future research.

5 CONCLUSIONS

This paper proposes a novel approach to the integra-
tion of a collaborative editing framework in order to
transparently extend a single-user application with
group editing functionality.

We assume that using standardised data model
interfaces and aspect-oriented concepts can dramati-
cally reduce implementation efforts in comparison to
other approaches using window event translation
and application specific programming interfaces.
This paper shows how little the effort is to transpar-
ently extend a single-user SVG editing application

using this approach. The application was extended,
by making use of the standard Document Object
Model and the Collaborative Editing Framework for
XML. The developed aspect-oriented programming
advises are reusable and next step will be to extend a
number of other single-user applications with group
editing functionality.

More and more applications today use XML as
a file format, for example OpenOffice, Mircosoft
Word 2007 and a number of editors for other XML
based file formats. If those applications make use of
the DOM API internally for the modification of their
data model, this will ease their extension with real-
time collaboration features.

However, one aim of this research project is to
provide collaboration support to existing and future
applications used for the design of vehicle electrical
systems in the automotive industries. Today, the
SVG format is a de facto standard for the representa-
tion of circuit diagrams in this area. Other XML
based document formats such as ELOG (Elec-
trological Model) are currently under development.
The development of a vehicle electrical system is a
complex process requiring intensive collaboration
between a number of different companies such as
the OEM, the suppliers and manufacturers of the
cable loom and different subcontractors, but the cur-
rent applications used in this area do not provide
support for real-time collaboration. Providing a sys-
tem that supports real-time collaborative engineering
would allow all parties to work on a single source.
This could lead to a better quality and higher
productivity.

REFERENCES

Chen, D. Sun, C, Jia, X. Zhang, Y. Yang, Y., 1998.
Achieving convergence, causality-preservation, and
intention-preservation in real-time cooperative editing
systems. In ACM Transactions on Computer-Human
Interaction, Vo1.5, No. 1, pp. 63-108

Ignat, C. Norrie, M. C., 2002. Tree-based model algorithm
for maintaining consistency in real-time collaborative
editing systems. In ACM Proceedings. Fourth Interna-
tional Workshop on Collaborative Editing Systems,
New Orleans, Louisiana.

Molli, P. Skaf-Molli, H. Oster, G. Jourdain, S., 2002
Sams: Synchronous, asynchronous, multisynchronous
environments. In Proccedings of Seventh International
Conference on CSCW in Design, Rio de Janeiro, Bra-
zil

Davis, A. Sun, C. Lu, J., 2002. Generalizing Operational
Transformation to the Standard General Markup Lan-
guage. In Proceedings of ACM 2002 Conference on
Computer Supported Cooperative Work, New Orleans,
Louisiana, USA.

Xia, S. Sun, D. Sun, C. Chen, D, Shen, H., 2004. Leverag-
ing single-user applications for multi-user collabora-
tion: the CoWord approach. In Proceedings of ACM
2004 Conference on Computer Supported Cooperative
Work, Chicago, IL USA

Lu, J. Li, R. Li, D., 2004. A state difference based ap-
proach to sharing semi-heterogeneous single-user edi-
tors. In Proceedings of CSCW'04 workshop on col-
laborative systems (JWCES-6) and application sharing
systems. Chicago

Li, D. Li, R. Yu, Y. Yang, Y., 2003. Using Familiar Sin-

gle-User Editors for Collaborative Editing. In Pro-

ceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03)

Begole, J. M. A., 1999. Flexible Collaboration Transpar-
ency: Supporting Worker Independence in Replicated
Application-Sharing Systems. Ph. D. Dissertation. Vir-
ginia Polytechnic Institute and State University,
Blacksburg

Gerlicher, A. R. S., 2006 A Framework for Real-time Col-
laborative Engineering in the Automotive Industries,
In Proceedings of Third International Conference on
Cooperative Design, Visualization and Engineering,
CDVE 2006, Mallorca, Spain

Myers, E. W., 1986. An O(ND) difference algorithm and
its variations, Algorithmica I, pages 251-266

Li, D. Lu, J., 2006. A Lightweight Approach to Transpar-
ent Sharing of Familiar Single-User Editors. In Pro-
ceedings ofACM CSCW'06, Banff, Alberta, Canada

Pichiliani, M. and Ilirata, C. M., 2006. A Guide to Map
Application Components to Support Multi-User Real-
time Collaboration. ITA (short paper), Collaborate-
Com 2006, Atlanta, Georgia, USA

Grudin, J., 1994. Groupware and social dynamics: eight
challenges for developers. Communications of the
ACM, Volume 37, Issue 1, pages 92 - 105

HyperJ Overview (Tarr, P). Retrieved January 14,2007,
from http: //www. alphaworks. ibm. com/tech/hyperj

GLIPS Graffiti Editor (n. d.). Retrieved January 14,2007,
from http: //glipssvgeditor. sourceforge. nett

ITRIS (n. d.). Retrieved January 14,2007, from
http: //www. itris. fr

PARC, Palo Alto Research Center, Inc. Retrieved January
14,2007, from http: //www. parc. xerox. com/

The Aspect) Project (n. d.). Retrieved January 14,2007,
from http: //www. aspectj. org

Aspect-oriented programming - Wikipedia (n. d.). Re-
trieved January 14,2007, from
http: //en. wikipedia. org/wiki/Aspect-
orientedj, rogramming

Batik SVG Toolkit (n. d.). Retrieved January 14,2007,
from http: //xmlgraphics. apache. org/batik/

W3C Document Object Model (n. d.). Retrieved January
14,2007, from http: //www. w3. org/DOM

Electrological Model, ELOG, VDA. Retrieved January 14,
2007, from http: //www. ecad-ifde/elog. html

A Framework for Real-Time Collaborative Engineering
in the Automotive Industries

Ansgar R. S. Gerlicher

London College of Communication
University of Applied Science, Stuttgart

Dingelstedtstr. 5,30655 Hannover
gerlicher@hdm-stuttgart. de

Abstract. Today, many different companies are involved in the automotive
engineering process. The OEM, subcontractors and suppliers all need to
collaborate and access the same data. Specialized applications are used in the
process of designing vehicle electrical systems. These applications use
proprietary data formats and do not support collaborative engineering. Thus
collaboration methods are limited to turn-taking, split-combine and copy-
merge. To become application independent and stay future-proof, a new trend is
the transformation of data from the proprietary data formats to the Extensible
Markup Language' (XML). This will allow new ways of viewing, editing and
analyzing the data using new and existing applications and tools that use XML
as a data model. This paper presents a novel software framework that allows
easy enhancement of any such applications with the ability of collaborative
real-time editing. Support for heterogeneous applications, a new flexible plug-
in architecture and easy application integration are some of its key features.

Keywords: XML, Collaborative Engineering, Real-time Collaboration,
Software Engineering, Groupware, CSCW, Vehicle Electrical System.

1 Introduction

The development of vehicle electrical systems is a complex and tedious process.
Many different companies such as subcontractors and suppliers are involved in
designing and building the cable loom of a car. In order to support the engineers, a
number of applications such as Logical Cable', Catia3 and LDorado' are used to
design circuit diagrams and electrical components. The electrical components and
component symbols that are used in the design are administered in a so called Cable
Library System (CLS). The cable loom design is split into different modules where
each module design contains one or more diagram sheets. A number of companies

' Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation,
http: //www. w3. org/XMU, 4`h February 2004

2 Logical Cable (LCable), http: //www. mentor. com/products/cabling_hamess/index. cfm
3 Catia 3D, httpJ/www. 3ds. com/home
4 LDorado, http: //www. ldorado. harnesslab. de

such as the supplier or manufacturer of the cable loom, different subcontractors and
the OEM (e. g. Volkswagen) are involved in the cable loom design. Thus a tight
collaboration between the involved companies and the OEM is required. For the
exchange of data between the OEM and the subcontractors today a so called
construction data management system (CDMS) is used. Such systems are used for

storing and retrieving development artifacts. For example, a copy of the CLS library
(containing all electrical components that are required for designing a circuit diagram)
is retrieved by the subcontractor via the CDMS. The subcontractor then uses this
library to design the wiring diagrams. Problems occur here for example, when one
subcontractor works with an older version of the CLS than other involved parties.
When exchanging the wiring diagrams, conflicts can occur that need to be resolved
manually. The process of integrating changes made by subcontractors into the overall
design, the management of the design data in CDMS and an error checking procedure
are time consuming and expensive. These and other problems reduce the productivity
of the engineering process. To overcome these problems a synchronization
mechanism would be helpful, which ensures that all companies involved in the design
process, work with up to date data. In the design process a system that supports real-
time collaborative engineering would allow all parties to work on a single source.
Additionally the OEM would always be able to see the current status of work and
check the design for errors at all times. This could lead to a better quality and higher
productivity.
The development of complex applications such as a symbol editor or a wiring
diagram editor is a difficult and time consuming task. Since already various single-
user applications exist it would be much simpler and user friendly to enhance the
existing applications with real-time collaboration functionality, instead of developing
new collaborative applications. One of the advantages is, that users do not have to
learn and adapt to a new application but can use their familiar application with
enhanced functionality. The goal of our research is to develop a software framework
that allows the enhancement of any type of single user editing system or application,
using XML as a data format, with the ability of collaborative real time editing. The
trend is set by the Verband der Automobilindustrie VDA (Automotive Industry
Association) to use XML as the new data format for the design and exchange of
vehicle electrical systems. In the automotive industry the Scalable Vector Graphics'
(SVG) format is used to visualize and exchange wiring diagrams. Other XML based
languages exist or are in development to model the logic and other data that is needed
in the vehicle electrical system design. These are for example KBL6 and Elog'. The
KBL (Harness Description List) XML format (VDA recommendation 4964) is a
subset of the AP212 ISO Specification for vehicle electrical systems. It defines a data

model and an XML schema for the exchange of harness design data between the
OEM and the suppliers. Elog is a XML format currently under development by the
VDA and will be used to represent the electro-logical model of a vehicle electrical

s Scalable Vector Graphics 1.0 Specification. W3C Recommendation,
http: //www. w3. org/TR/SVG/, 2001

6 KBL, Kabelbaumliste (Harness Description List), VDA recommendation 4964,
http: //www. ecad-ifde/kbl. html

7 Electrological Model, ELOG, VDA, http: //www. ecad-if de/elog. html
8 AP212, Electrotechnical Design and Installation, ISO Standard 10303-212

system including views (sheets), electrical components, wires and connectors. As
XML is becoming the standard interchange and data format not only in the
automotive industries, a software system that supports real-time collaborative editing
of XML documents could lead to a general solution for many application areas. The
collaborative editing framework for XML (CEFX) we present in this paper, will allow
enhancing applications that use XML as a data model, but is not limited to these.
The paper is structured as follows. In the next section prior work in supporting
collaborative use of single-user applications and the CEFX approach are discussed.
Section 3 discusses the CEFX framework architecture, the system components and
how single-user applications can be extended by CEFX. In Section 4 the consistency
model that is applied in the default implementation of CEFX is briefly discussed. In
section 5 requirements, limitations and future work is discussed and in the last section
research findings and contributions in this paper are summarized.

2 Collaborative Systems

Collaborative systems that allow the enhancement of a single-user application with
collaborative functionality are typically classified into collaboration-transparent
systems and collaboration-aware systems. Systems that provide methods to share a
single-user application without changing the application are called collaboration-
transparent. The applied methods are unknown to the application and its developers.
Collaboration-aware systems integrate collaboration mechanism by changing the
application so that the application is aware of these. This allows a tight integration of
collaboration functionality into an existing application. The problem with the
collaboration-aware approach is, that it requires access to the source code of an
application which in some cases may not be possible for `of the shelf' software
products. The collaboration-transparent approach does not require access to an
applications source code. Two types of collaboration-transparent systems can be
identified: application independent (generic) and application dependent systems.
Application independent systems do not know the shared application. They work on
basis of transmitting low-level input/output data such as key-strokes, mouse
movements and display pixel data. Application dependent systems are used to
enhance a specific application with collaboration functionality and have knowledge of
the application specific data model or the application API (Application Programmers
Interface).
Examples for application independent and collaboration-transparent systems are
application sharing environments such as NetMeeting, VNC or Netviewer. They
allow sharing the view of any single-user application among a group of users. Such
systems only support strict WYSIWIS and are useful and effective for tightly coupled
collaborative work, where independent interaction is not wished or not required.
Multi-user free interaction where each user can individually for example work on a
different part of a shared document is not supported.
An example for an application dependent system is the CoWord system by Xia, Sun
et al. [10]. This systems makes use of the application specific API in order to integrate
collaboration functionality into the Microsoft Word product. The user actions

performed on the word document are thereby intercepted and translated by the
Adaption Layer into operations for the Operational Transformation (OT) Layer which
is responsible for maintaining the consistency of the shared document. The
collaboration system underlying CoWord is collaboration-transparent, supports
relaxed WYSIWIS and can also be used in a collaboration-aware system design. For
the collaboration-transparent approach CoWord requires the execution environment
and the single-user application to provide a suitable API which can be used to
intercept and replay user input events and whose data and operational model are
adaptable to that of the underlying OT technique. If an application and the execution
environment provide a suitable API the greatest effort lies in implementing the
translation of the user actions into operations required by the OT Layer.
Other collaboration-transparent systems such as the one presented by He et al. [14]
use a similar technique as in CoWord to enhance a single-user application with
collaborative functionality. Low-level I/O events such as keyboard and mouse events
are intercepted and translated into semantic commands. A so called Communicator
collects high-level messages (such as CAD commands and model data) and low-level
messages and transmits those over the network to the other collaborating sites. There
they are translated into execution environment GUI commands or application specific
API calls.
The Intelligent Collaboration Transparency (ICT) project [16] also uses a similar
technique as the above systems to enhance single-user applications with collaboration
functionality. In addition to the CoWord approach the aim is to support sharing of
familiar heterogeneous single-user editors.
The main problem of all of these systems is the effort of translating user actions into
application semantic commands. For each single-user application that is to be
enhanced, a translation layer has to be implemented. Because this is a difficult and
time consuming task, the second generation of the ICT project (ICT2) uses a
difference algorithm instead [15]. This new approach has shortcomings in the
performance and the applications can not be heterogeneous but must be semi-
heterogeneous. That is their interfaces can differ but the writing style must be the
same.
The Flexible JAMM [17] (Java Applets Made Multi-User) project uses a different
approach. Single-user applications are enhanced by replacing selected single-user
components of the shared application with multi-user versions. This approach requires
the underlying execution environment to meet certain conditions such as capabilities
for process migration, run-time component replacement, dynamic binding and user
input events interception and replay. The common interface of applications extended
by JAMM is Java Swing and Java Object Serialization (JOS). In contrast to the other
mentioned systems, the JAMM system does not require the development of a
translation layer in order to convert user actions into application semantic commands
or API calls as long as an application is based on Swing and all application classes are
serializable. Although the number of Java Swing based applications has increased in
the last years, the number of single-user applications that fulfill the mentioned
requirements is small.
The CEFX approach is based on a common interface: the XML Document Object
Model (DOM). If a single-user application uses a DOM internally, a suitable
application API is not required in order to integrate CEFX into an existing

application. Such single-user applications can be easily extended without the effort of
implementing a translation layer. Another advantage is that heterogeneous

applications can be used to collaboratively work on a shared document because they
share a common interface, the DOM. The number of existing and emerging XML

applications and thus the number of single-user applications using XML as data

model (native XML applications) is growing. Today the majority of these applications
are general XML editors or specialized SVG graphic editors'. Another example for an
application that extensively uses the DOM is OpenOffice. OpenOffice uses
OpenDocument'°, an XML format, as native file format. An increasing number of
applications exist that do not necessarily use XML as their internal data model, but

provide a DOM API that allows directly accessing and manipulating the internal data.
These applications can also be extended by CEFX with relative small implementation

effort.
In the case where an application does not base on XML and does not provide a DOM
API, CEFX can also be used. This can be achieved by using similar methods as in the
Transparent Adaption approach of CoWord or other transparent approaches. In this
case it would be necessary to implement a DOM translation layer for converting user
actions into XML operations for the CEFX collaboration layer. Technologies such as
XML binding can dramatically reduce the time and effort of translating an internal
data structure to the XML data model.

3A Flexible Framework Architecture

Single-user applications that are extended with a collaborative framework are usually
tied to its consistency model and conflict resolution strategy. Adjustments can
become expensive and time consuming. In order to support as many different

application types as possible, the consistency maintenance algorithm of a
collaborative framework therefore has to be very flexible in the selection of conflict
resolution strategies. Depending on the application type the required strategies may
vary. For example, in one case a priority based conflict resolution strategy, where the
user with the highest priority wins makes sense. In other cases a multi-versioning
approach would be better. The CEFX framework allows an easy integration into

existing applications (supporting the collaboration-aware and the collaboration-
transparent approach) and an easy extension of the framework itself with new features

or enhanced concurrency control algorithms. This flexibility is made possible by the
plug-in architecture of CEFX. In the automotive industry it is required that all
documents used in the design process are always accessible via a central site. This is

supported by the hybrid software architecture of CEFX, discussed in the next section.

9 For a list of native SVG editors refer to: http: //www. w3. org/Graphics/SVG/SVG-
Implementations

10 OASIS Open Document Format for Office Applications (OpenDocument). OASIS Standard
May 2005

3.1 A Hybrid Software Architecture

The Collaborative Editing Framework for XML is based on a hybrid-architecture. The
hybrid architecture is a mixture of both the centralised and the replicated
architectures. Each site holds a client and a server process as well as a partial or
complete copy of the shared data resource. Additionally a server site exists holding
both the shared data resource and a server process.
All operations are executed locally before they are sent to the other sites to be
executed, just like in the replicated architecture approach. Additionally the operations
are also sent to the server site; there they are executed as well. The remote client sites
execute the received operations only if necessary; that is if they have an interest in the
operation. Next to the better responsiveness as in replicated systems, the hybrid
approach has the advantage of having always a central site that holds the current
correct version of the document. If a new site joins the session, a copy of this version
can be obtained easily. It also can be used for synchronisation issues. Users working
on a very large document may not interfere with each other, but if they do at any
point, the system will know if their local version is up to date or not. The system can
then, if necessary, either obtain a new copy from the server site (if for example too
many changes have been made) or simply execute the operations on the relevant
document part. In that case it is not necessary to obtain a copy of the whole document
but only a copy of the relevant part.

3.2 The DOM Adapter

The Document Object Model (DOM) API is a common interface to the XML model
tree. Applications that allow editing of XML documents usually own a DOM in order
to manipulate their data model. Implementations of DOM exist for nearly all modem
programming languages and operating systems. When developing a framework that
allows enhancing existing XML applications with collaborative functionality, it
makes sense to use this common interface as an entry point to these applications. The
connection between an application and the CEFX framework is the DOM Adapter
(DA). In the case of a collaboration-aware integration of CEFX, it provides a DOM
interface (by derivation) to the application that is exactly equivalent to the
application's original DOM interface. Neither the application code manipulating the
DOM nor the DOM object itself, need to be changed. The DA is programmatically
provided with a reference to the original DOM and replaces it with a version
generated by the DA. In the collaboration-transparent approach, the DA is integrated
into the used translation layer (TL) (DOM/DOM TL if a DOM API is provided by the
application, otherwise DOM/API TL) instead of the application. The generated DOM
implements all methods of the original version and integrates control structures that
forward modification events to the CEFX controller. These modification events are
then analyzed by the CEFX controller and delegated to the corresponding handlers for
synchronization and awareness issues. In a single-user application the document that
is to be edited is stored for example on the local file system. When the user opens a
document, the document is parsed and initialized by the application. The DA provides
functions for parsing and initializing a document as well. It checks if the document is

currently open in a collaborative editing session. If it is not part of a session, a new
session is created. If the document is already opened in a session, the DA carries out
the corresponding actions to connect the application with that session. The CEFX
framework provides functions to retrieve information on documents in open sessions
and to connect to those sessions. The controller instance of the CEFX framework

analyses changes made to the document of an application. It generates events and
delegates these to the corresponding modules or plug-ins of the framework. CEFX

provides a set of default implementations for concurrency control including conflict
resolution strategies and awareness widgets. These default implementations can be

extended, or replaced with completely new implementations. For this the CEFX
framework defines a set of extension points. An extension point declares a contract
(using XML and programming language interfaces) that extensions must conform to.
Other plug-in implementations that want to connect to that extension point must
implement that contract in their extension.

Single-User Application
Application Internal Application
DOM API DOM API

DOM/DOM Translation Layer 1DOM/API Translation Layer

(Aý CC
Extension J Awareness CEFX Extension

Controller Controller OS

(AC) (CEFXC) Conflict API
Resolution

Module
(CRM)

Awareness Concurrency
0 E"'r""°ý Widget Controller

(AW) (CC) hird-pa
CRM

Extension

Network Controller (NC) 1
CEFX Framework 1

Fig. 1. t he basic C EFX plug-in components and their interrelation. Plug-ins using extension
points to extend the trames%ork functionality are named third-party extensions in this figure.

The basic CEFX plug-in components, next to the DOM Adapter are the Concurrency
Controller (CC), the Conflict Resolution Module (CRM), the Awareness Controller
(AC), a set of Awareness Widgets (AW) and the Network Controller (NC). The ('C of
the framework is responsible for maintaining the consistency of the document and
uses the NC module to transmit and receive editing events to and from remote sites.
The CRM implements the rules that are applied if a conflict occurs. That is, how the
system will react in that case. This could be for example on basis of a priority based
or a no-operation conflict resolution scheme (CRS). A single-user application does
not know the notion of remote sites. In order to give a user a feedback of what other

users are doing, so called awareness mechanisms need to be integrated into the
application. Awareness mechanisms are also necessary to alert users of conflicts that
can not be resolved automatically. For this integration, the framework offers methods
to register own listeners and awareness widgets that get notified by the framework of
events from remote sites. These listeners are registered with the AC. The AC is

responsible for receiving and dispatching events from and to the application and
remote sites. The events can for example contain information on mouse movements,
locking events or other control events that need to be visualized to the user in some
way or the other. Figure 1 shows an overview of the basic CEFX framework
components and their interrelation. An application can use the default framework
components such as awareness widgets or provide its own and register them with the
framework using the extension points. The default awareness widgets themselves
define extension points that allow extending them with new functionality. For
functionality such as changing the conflict resolution strategy or selecting a part of a
document that is to be locked, the framework offers control structures and extension
points that can be used to configure the current concurrency controller and conflict
resolution strategy implementations. The default concurrency controller and conflict
resolution plug-ins define extension points as well in order to extend them with
additional functionality.

3.3 Consistency Maintenance

For the synchronisation of XML documents in a real-time collaborative environment
a consistency maintenance algorithm is required that supports the hierarchical
structure of XML documents. A number of research groups have developed excellent
consistency maintenance algorithms for hierarchical data models. The default
implementation for consistency maintenance of XML documents provided by CEFX
was inspired by the work of [2], [3], [5], [7], [8], [9] and others. A detailed discussion
of our consistency maintenance algorithm for XML documents goes beyond the scope
of this paper. Thus we can only give a very brief overview to its functionality.
In contrast to other, more general, consistency maintenance algorithms, the algorithm
used here is based on XML as a data model. The finest level of granularity in this
approach is an XML element node. Working on, for example character level, is not
supported. If this is required an XML Schema could be used that defines a element
node for each required granularity level, in this case for example character, word,
sentence, paragraph, section, chapter and document. A character element node would
contain only one character. A word element node would contain an ordered list of
character nodes and so on. An important advantage of using XML as the data model
is the hierarchical structure. Insert, delete and move operations can be performed on a
higher semantic level such as a paragraph or a section. This increases the efficiency
because there are fewer operations transmitted over the network and can help to
enforce the semantic consistency of a document [2]. The basic set of operations used
in the CEFX concurrency control algorithm is insert, delete, move and update.
Additionally to support optional locking, lock and unlock operations are used. Each
XML element node within a document is assigned a universal unique id (UUID). This
allows addressing a node very quickly and unambiguously. This reduces the

processing time in comparison to algorithms that use a positional addressing scheme
(e. g. [51).

5 Requirements, Limitations and Future Work

If the collaboration-aware approach is used to enhance a single-user application,
access to the source code of an application is required. Additionally the single-user
application is required to use XML as internal data model. These requirements are
met by a range of open source XML and SVG editing applications and some
applications used in the automotive industry. If the collaboration-transparent approach
is used, a translation layer (TL) has to be implemented that connects to the provided
application API. If an application provides a DOM API the development of the TL is
straightforward. Currently a prototype of the CEFX framework is being developed by
the authors. The next step is to enhance an existing application with collaborative
functionality using the CEFX framework. For this we will integrate our framework
into an existing application for the design of electrical symbols, using the
collaboration-aware approach. These electrical symbols are then stored in the CLS
and used in the design of wiring diagrams. Future plans are to integrate this
framework into an application for designing and editing of wiring diagrams.

6 Conclusions

This paper contributes a novel collaborative framework concept that allows an easy
enhancement of single-user applications with real-time collaborative functionality.
CEFX provides the following novel features:

" Flexible plug-in architecture allowing third party developers to extend CEFX with
new awareness widgets, concurrency control mechanisms and conflict resolution
schemes. This allows the framework to perfectly adapt to the requirements of the
process workflow. Applications that use CEFX will profit from new third party
developments as well, without the necessity of changing source code.

" Support for collaborative work using heterogeneous applications. This is especially
helpful in the automotive industry, where different tools are used to manipulate,
analyze and check the same data (in our case the vehicle electrical systems)

" Flexible consistency maintenance algorithm for XML documents supporting
optional locking of document parts. This allows adapted working schemes and
privacy support (not discussed in this paper)

"A novel approach to the extension of single-user applications by making use of the
DOM as a common interface. The CEFX approach simplifies the integration of the
collaborative framework into an existing single-user application supporting both,
the collaborative-aware and the collaborative-transparent approach

Although the number of applications using XML as a data model today is relatively
small, we assume that with XML becoming more popular the number of XML
applications will increase. CEFX provides a way to easily enhance such applications

with collaborative functionality and we believe that its features promise a broad user-
acceptance.

References

1. Chen, D. Sun, C, Jia, X. Zhang, Y. Yang, Y. Achieving convergence, causality-preservation,
and intention-preservation in real-time cooperative editing systems. ACM Transactions on
Computer-Human Interaction, Vol. 5, No. 1, March, 1998, pp. 63-108

2. Ignat, C. Nome, M. C. Tree-based model algorithm for maintaining consistency in real-time
collaborative editing systems. ACM. Fourth International Workshop on Collaborative
Editing Systems, New Orleans, Louisiana. 2002

3. Molli, P. Skaf-Molli, H. Oster, G. Jourdain, S. Sams: Synchronous, asynchronous,
multisynchronous environments. In Seventh International Conference on CSCW in Design,
Rio de Janeiro, Brazil, 2002

4. Ellis, C. A. Gibbs, S. J. Concurrency Control in Groupware Systems. In Proceedings of the
1989 ACM SIGMOD international conference on management of data. ACM 1989

5. Davis, A. Sun, C. Lu, J: Generalizing Operational Transformation to the Standard General
Markup Language. Proceedings of ACM 2002 Conference on Computer Supported
Cooperative Work, Nov 16-20, New Orleans, Louisiana, USA.

6. Lamport, L. Time, clocks and the ordering of events in a distributed system. Mass. Computer
Associates, 1978

7. Sun, C. Ellis, C. Operational Transformation in Real-Time Group Editors: Issues,
Algorithms, and Achievements. Proceedings of the 1998 ACM conference on Computer
supported cooperative work, Seattle, Washington, 1998.

8. Galli, R. Data Consistency Methods for Collaborative 3D Editing. Ph. D. thesis, Universitat
de les Illes Balears, Palma de Mallorca, Spain, Nov. 2000.

9. Ionescu, M. Marsic, I. An arbitration scheme for concurrency control in distributed
groupware. In Proceedings of The Third International Workshop on Collaborative Editing
Systems, pages 32-42. ACM, 2000

10. Xia, S. Sun, D. Sun, C. Chen, D, Shen, H.: Leveraging single-user applications for multi-
user collaboration: the CoWord approach. Proceedings of ACM 2004 Conference on
Computer Supported Cooperative Work, Nov 6-10, Chicago, IL USA

13. Wilkinson, N. Using CRC Cards: An Informal Approach to Object-Oriented Development.
SIGS Books, New York, 1995.

14. He, F. Han, S. Wang, S. Sun, G. A road map on human-human interaction and f ine-function
collaboration in collaborative integrated design environments Computer Supported
Cooperative Work in Design, 2004. Proceedings. The 8th International Conference on

15. Lu, J. Li, R. Li, D. A state difference based approach to sharing semi-heterogeneous single-
user editors. CSCW'04 workshop on collaborative systems (IWCES-6) and application
sharing systems. Nov. 2004, Chicago

16. Li, D. Li, R. Yu, Y. Yang, Y. Using Familiar Single-User Editors for Collaborative Editing.
Proceedings of the 36th Annual Hawaii International Conference on System Sciences
(IIICSS'03)

17. Begole, J. M. A. Flexible Collaboration Transparency: Supporting Worker Independence in
Replicated Application-Sharing Systems. [Ph. D. Dissertation. Virginia Polytechnic Institute
and State University, Blacksburg, 1999

150 Collaborative Work und Visualisierung

Erweiterung bestehender
Anwendungen um kollaborative
Funktionen mit Hilfe des
Collaborative Editing Framework
for XML (CEFX)

Ansgar Gerlicher
FH Stuttgart, Hochschule der Medien
Studiengang Medieninformatik
The London Institute, London College of Printing
gerlicher@hdm-stuttgart. de

Zusammenfassung: Das interdisziplinäre Forschungsgebiet des Computer
Supported Collaborative Work (CSCW) befasst sich mit Gruppenarbeit und Zusam-
menarbeit, und den die Gruppenarbeit unterstützenden Informations- und Kom-
munikationstechnologien. Ein Teilbereich des CSCW ist das sogenannte �Real-
Time Collaborative Editing". Dabei wird untersucht, wie Systeme aufgebaut sein
müssen, die es mehreren Personen gleichzeitig erlauben, in Echtzeit auf einem
Dokument zu arbeiten ohne dabei Inkonsistenzen zu riskieren. Die zur Zeit
existierenden CSCW Editoren aktueller Forschungsarbeiten sind spezialisiert auf
ein oder wenige Datenformate. Diese Forschungsarbeit hingegen beschäftigt sich
mit der Entwicklung eines Frameworks (CEFX), mit dem es ermöglicht werden
soll, quasi beliebige XML Dokument-Typen in Echtzeit gemeinschaftlich und über
das Internet, also von beliebigen Standorten aus, zu editieren. Damit soll ein
universeller Ansatz für die Lösung der Probleme des

�Real-Time Collaborative
Editing" geschaffen werden.

1 Einleitung

Die Erstellung größerer Dokumente wie zum Beispiel Kataloge, Handbücher,
Software-Quellcode etc. erfordert oft Teamarbeit. Arbeiteten früher in einer
Organisation mehrere Personen an einem größeren Dokument, so geschah
dies meist nach dem einfachen Prinzip des

�Turn
Taking`. Dabei wurde das

Collaborative Work und Visualisierung 151

Dokument von einer Person nach getaner Arbeit an die nächste weiter-
gereicht. Auf diese Art und Weise war es möglich das Dokument konsistent

zu halten und, da es nur eine jeweils gültige Dokumentversion gab, musste
keine Synchronisierung oder Versionierung von Dokumenten stattfinden.
Diese einfache Methode war allerdings sehr Zeitaufwändig und umständlich.
Trotzdem wird heute oft noch so verfahren, gerade bei der Erstellung kleine-

rer Dokumente im Team, bei denen die Installation entsprechender Software

zur Unterstützung der Teamarbeit zu aufwändig erscheint.
Um die Teamarbeit zu beschleunigen und zu vereinfachen und den-

noch die Konsistenz der Dokumente zu wahren, werden heutzutage beson-
ders im Bereich der Softwareentwicklung häufig Programme zur Versionie-
rung und Synchronisierung von Dokumenten (in diesem Fall meist Quell-
code) eingesetzt. Beispiele dafür sind Microsoft Visual SourceSafe [MSVSS]

oder Concurrent Versioning System [CVS]. Diese Programme können im
Prinzip für die Versionierung und Synchronisierung jedes Dokumenttyps ein-
gesetzt werden. Für die Synchronisierung der Dokumentversionen werden
dabei optimistische bzw pessimistische Sperrverfahren eingesetzt. Beim pes-
simistischen Sperren ist paralleles Arbeiten in Echtzeit auf ein und derselben
Datenquelle (dem Dokument) nicht möglich, da hier nur ein Anwender zu
einer gegeben Zeit die Sperre besitzt. Erst nach der Freigabe des Dokuments
durch diesen kann ein anderer darauf zugreifen. Beim optimistischen Verfah-

ren ist paralleles Arbeiten zwar möglich, aber nur auf lokalen Kopien des
Dokuments, wobei bei deren Zusammenführung zu einer neuen Dokument-

version Konflikte auftreten können. Paralleles Arbeiten direkt auf der Daten-

quelle ist bei keinem der beiden Ansätze möglich.
Ein Trend ist das kollaborative Arbeiten an verteilten Dokumenten im

World Wide Web. Hierzu gibt es seit einiger Zeit Systeme, die Dokumente
im Internet nicht nur lesbar, sondern auch editierbar machen. Hierzu zählen
Technologien wie WikiWikis [WIKI] oder WebDAV [WDAV]. Bei diesen
Systemen kommen dieselben oder ähnliche Verfahren zum Einsatz, wie bei
den oben genannten.

Damit ist das parallele Arbeiten mehrerer Personen in Echtzeit auf der

selben Datenquelle ebenso wenig möglich, da die Granularität der eingesetz-
ten Sperrverfahren zu grob ist. Es ist meist nur möglich komplette Dokument-
instanzen zu sperren. Die hierarchische Struktur eines Dokumentes wird
dabei nicht ausgenutzt.

In der Forschung existieren kollaborative Editoren [SUN1] für spe-
zielle proprietäre Datenformate, die paralleles Arbeiten in Echtzeit mehrerer
Personen über das Internet an einem Dokument unterstützen [SUN2]. Dazu

zählen Systeme wie REDUCE [REDUCE], CoWord [CWORD] oder SAMS

152 Collaborative Work und Visualisierung

[SAMS]. Diese Systeme ermöglichen allerdings nur das Editieren eines be-
stimmten Dokumenttyps und verwenden meist ein proprietäres Datenformat.
Eine Lösung, die kollaboratives Editieren verschiedenster Dokumenttypen in
Echtzeit über das Internet unterstützt, existiert noch nicht.

Viele der neuen und bestehenden Anwendungen für die Erstellung

und Verwaltung von Dokumenten setzen auf XML als standardisiertes
Datenformat. Dazu zählen z. B. verschiedene Office Anwendungen, Editoren
für Vectorgrafik und Multimedia (SVG [SVG], SMIL [SMIL]) und Editoren für

virtuelle Welten (X3D [X3D]). Dieser Trend, XML als standardisiertes Daten-
format einzusetzen bringt viele Vorteile und kann für verteiltes Arbeiten

genutzt werden.
Diese Forschungsarbeit beschäftigt sich mit der Entwicklung eines

generischen Frameworks, mit dessen Hilfe Standardanwendungen, welche
XML als Datenformat verwenden, mit der Fähigkeit zum kollaborativen
Editieren von Dokumenten in Echtzeit und über das Internet erweitert wer-
den können. Das Collaborative Editing Framework for XML (CEFX) verwen-
det dabei die besonderen Eigenschaften des XML Datenmodels für die
Synchronisierung und Versionierung der Dokumente. Folgende Hauptfunk-
tionen sollen in dieser Arbeit umgesetzt werden:

" Standortunabhängiges kollaboratives und synchrones Arbeiten an
Dokumenten in Echtzeit unter Verwendung des Internets als Daten-
kanal

" Unterstützung aller aktuellen und zukünftigen XML Dokument-
typen

" Einfache Integration in bestehende Editoren und Tools und deren
Erweiterung mit kollaborativen Funktionen

" Verbesserung der Usability durch sogenannte �Awareness"-Mecha-
nismen

" Semantische Erweiterung der Konsistenzerhaltung durch Kontext-
prüfung auf Basis von XML Schema

2 Nebenläufigkeitskontrollverfahren in kollaborativen
Editoren

Nebenläufigkeitskontrolle ist ein häufig eingesetztes Verfahren um Inkon-
sistenzen in Datenbanksystemen vorzubeugen. Frei nach der Definition von
Bernstein et al. [31]versteht man unter Nebenläufigkeitskontrolle die Koordi-
nation der Aktionen verschiedener Prozesse, die gleichzeitig auf gemeinsame

Collaborative Work und Visualisierung 153

Daten zugreifen und sich damit potentiell behindern. Nebenläufigkeitskon-
trollmechanismen werden verwendet um die Konsistenz eines gemeinsam
genutzen Dokumentes zu bewahren. Dabei gibt es prinzipiell zwei unter-
schiedliche Verfahrensarten: Verfahren zur Konfliktvorbeugung und Verfahren

zur Konfliktauflösung.
Zu den Verfahren der Konfliktvorbeugung zählen unter anderem die,

in der Datenbankwelt weit verbreiteten Sperrverfahren zum Beispiel das pessi-
mistischen Sperrverfahren. Die einfachste Form der pessimistischen Sperrver-
fahren ist das exklusive Sperren (exclusive locking) von Datensätzen. Da die-

ses Verfahren bei vielen parallelen Transaktionen zu einer schlechten System-
leistung führt, wurde das shared lock (read lock) bzw das SX-Verfahren (shared-

exclusive lock) eingeführt. Um die auftretende Deadlock' Problematik zu
Lösen, wurden weitere pessimistische Sperrverfahren entwickelt, wie zum Bei-

spiel das Zwei-Phasen-Sperrverfahren. Solche pessimistischen Sperrverfahren

werden sehr häufig in Datenbanksystemen und in Versionsverwaltungssyste-

men, wie zum Beispiel Microsoft Visual Sourcesafe [MSVSS] eingesetzt.
Ein Verfahren der Konfliktauflösung ist im Gegensatz dazu das opti-

mistische Sperrverfahren. Dieses basiert auf der Annahme, dass kollidierende
Transaktionen relativ selten auftreten und ein präventives Sperren von Daten-

sätzen unnötig hohen Aufwand und Leistungseinbußen nach sich ziehen
würde. Im Gegensatz zu den pessimistischen Sperrverfahren bleibt hierbei der
Ablauf einer Transaktion bis zu ihrem Abschluss unberührt. Damit ist ein
quasi paralleles Arbeiten an den selben Datensätzen möglich. Erst am Ende

einer Transaktion wird festgestellt, ob ein Konflikt mit einer anderen Trans-

aktion aufgetreten ist. Verschiedene Client/Server Systeme, wie zum Beispiel
das Concurrent Versioning System [CVS], verwenden dieses oder ähnliche

optimistische Verfahren zur Datensynchronisation. Beim CVS System werden
Änderungen an den Datensätzen auf Client Seite zunächst ohne Sperrung
(locking) durchgeführt. Sobald die Änderungen abgeschlossen (und

�commit-
ted") wurden, werden die Datensätze auf dem Server gesperrt. Danach wird
in der Validierungsphase geprüft, ob Konflikte mit anderen Transaktionen

vorliegen. Mithilfe von Zeitstempeln wird geprüft, ob ein Datensatz zwischen-
zeitlich geändert wurde. Falls die Validierung fehlschlägt, wird die Transaktion

zurückgefahren und wiederholt, oder der Client wird über den Konflikt in
Kenntnis gesetzt. Der Vorteil dieses Verfahrens ist die kurze Sperrzeit

während der Validierungsphase. Ein Nachteil ist die relativ hohe Wahrschein-
lichkeit von Validierungsfehlern, so dass dieses Verfahren hauptsächlich in
Bereichen eingesetzt wird, in denen es nur wenige �gleichzeitige"

Benutzer

gibt. Diese Einschränkung ist allerdings wiederum sehr von der Sperrgranu-
larität abhängig. Mithilfe einer entsprechend feinen Sperrgranularität wäre die

Zur Begriffserklärung Deadlock siehe Anhang.

154 Collaborative Work und Visualisierung

Wahrscheinlichkeit für Konflikte bzw. Validierungsfehler entsprechend gerin-
ger. Die Sperrgranularität bestimmt die kleinste Einheit eines Sperrvorganges.
Systeme wie [MSVSS] und [CVS] aber auch andere existierende Systeme zur
Unterstützung der Arbeit im Team wie zum Beispiel WikiWikis [WIKI] oder
WebDAV [WDAV] verwenden nur eine Sperrgranularität auf Dokument-

ebene. Das heißt es wird immer das komplette Dokument gesperrt, auch
wenn nur ein kleiner Teil bearbeitet wird.

Pessimistische Sperrverfahren scheinen nicht für Echtzeiteditoren

geeignet, da durch die Sperrung auf Dokumentebene ein quasi paralleles
Arbeiten nicht möglich ist. Auch optimistische Sperrverfahren scheinen unge-
eignet, da bei zu grober Sperrgranularität und zu vielen �gleichzeitigen"
Benutzern die Häufigkeit von Validierungsfehlern und der Aufwand der
Zusammenführung asynchroner Dokumentversionen zu groß wird bzw nicht
mehr automatisiert erfolgen kann.

Ein weiterer wichtiger Grund, warum Sperrverfahren für Echtzeit-
Editoren eher ungeeignet sind, ist der relativ große Zeitaufwand, den die
Sperrung an sich beansprucht und die damit enstehende Verzögerung auf
Seite des Client. Diese Verzögerung würde in einem Editor stark den Arbeits-
fluss stören und ist daher nicht akzeptabel.

Für kollaborative Systeme, welche quasi Echtzeitanforderungen besit-

zen, wurden daher andere Synchronisationsverfahren entwickelt, wie zum
Beispiel das Verfahren der Operational Transformation.

3 Operational Transformation

Operational Transformation (OT) ist ein Verfahren zur Konsistenzerhaltung
durch Konfliktauflösung. Der größte Vorteil der Operational Transformation

gegenüber Sperrverfahren ist, dass eine Operation sofort, das heißt ohne Ver-

zögerung, durchgeführt wird. Der Benutzer muss also, im Gegensatz zu Sperr-

verfahren, nicht warten, bis eine Sperre auf dem zu bearbeitenden Datensatz
durchgeführt wurde. Bei der Operational Transformation werden Operatio-

nen direkt auf einer lokalen Kopie des Dokuments durchgeführt und danach

an die anderen Clients verteilt und dort erneut durchgeführt. Eine Operation
kann dabei, wenn sie von einem Client empfangen wurde, vor ihrer Durch-
führung zunächst transformiert werden. Die Transformation hat dabei das
Ziel, die Intention der Benutzer beizubehalten und die auf allen Clients vor-
liegenden Dokumentkopien zu konvergieren [8]. Es gibt verschiedenste
Vorschläge für Operational Transformation Algorithmen für Dokumente, die

auf einem linearen Datenformat basieren. Einige davon sind unter anderem

Collaborative Work und Visualisierung 155

dOPT [6], adOPTed [16], GOT [9], GOTO [7], SOCT2 [17]. Im Gegensatz zu
linearen Datenformaten gibt es zur Zeit nur einen Algorithmus für
Operational Transformation, welcher auf einem hierarchischen Datenformat
basiert: Der treeOPT [8] Algorithmus.

Die meisten dieser Algorithmen arbeiten nach dem selben Prinzip der
Konsistenzerhaltung. Hier soll ein kurzer Überblick darüber gegeben werden.
Der Operational Transformation Algorithmus wurde entwickelt um die Prob-
leme der Divergenz, Intentionsverletzung und der Kausalitätsverletzung' zu
beheben. Ein kollaboratives Editiersystem wird dabei als konsistent bezeich-

net, wenn es immer den Erhalt von Konvergenz, Intention und Kausalität

gewährleistet.
Zur Bewahrung der Kausalität wird ein Zeitstempel Verfahren auf

Basis der
�Vector-Logical

Clock" [15,17] verwendet. Dies erlaubt es sicherzu-
stellen, dass eine Operation A, die nach der Kausalordnung' �vor" einer
Operation B liegt (A < B), auch vor dieser ausgeführt wird, unabhängig davon
in welcher Reihenfolge die Operationen jeweils eintreffen.

Um die Konvergenz und die Intention einer Operation zu erhalten
wird eine totale Ordnungsrelation [7,8,30,36] zwischen den Operationen
definiert. Die totale Ordnungsrelation definiert, welche Operationen in wel-
cher Reihenfolge auf der jeweiligen lokalen Kopie eines Dokuments - welche
im jeweiligen Client (�Site") in einem kollaborativen Editier-System vorliegt -
ausgeführt wird. Zusätzlich werden alle ausgeführten Operationen der jewei-
ligen

�Site"
in einem History-Buffer gespeichert. Basierend auf der totalen

Ordnungsrelation und dem History-Buffer wird ein Undo/Do/Redo Schema
definiert. Dabei werden beim Eintreffen einer neuen Operation zunächst
alle Operationen im History-Buffer, welche aufgrund der totalen Ordnungs-

relation abhängig von der neuen Operation sind (also ihr nachstehen), rück-
gängig gemacht (Undo). Damit wird der ursprüngliche Dokumentzustand

wieder hergestellt. Danach wird die neue Operation ausgeführt (Do) und
danach wieder alle Operationen, die zuvor rückgängig gemacht wurden
(Redo). Zusätzlich wird jede Operation vor ihrer Ausführung transformiert
um auf die Änderungen zu reagieren, die durch die anderen Operationen her-

vorgerufen wurden. Um dies zu verdeutlichen zeigt die Abbildung 4 ein
Szenario eines Editiervorganges ohne Transformational Operation. Dabei

arbeiten zwei Benutzer an einem gemeinsamen Dokument, welches den Text

�efect" enthält. Der Text kann durch die Operation Ins(p, c) modifiziert wer-
den. Durch diese Operation wird ein Buchstabe c an Position p im Text ein-
gefügt. Es wird angenommen, das die Position des ersten Buchstaben im Text

1 (nicht 0) ist. Die Benutzer generieren die Operationen 01 = Ins(2, f) und 02

= Ins(6, s).

2 Zur Begriffserklärung Divergenz, Intentionsverletzung, Kausalitätsverletzung siehe Anhang.
Zur Begriffserklärung Kausalordnung siehe Anhang

156 Collaborative Work und Visualisierung

Site 1

01 1

efect

o'
Ins(2, f) N

02
Inis(6, s)

effecst

Site 2

F -N

efect

02
Ins(6, s)

Ins(2, f)

effects

Abbildung 4: Fehlerhafte Integration von Operationen

Wird die Operation 01 an �Site" 2 empfangen und ausgeführt, so
führt dies zu dem erwarteten Ergebnis

�effects".
Im Fall von �Site" 1 sieht dies

anders aus. Dort wird nicht beachtet, dass die Operation 01 bereits zuvor aus-
geführt wurde und damit die Textlänge verändert wurde. Das Resultat ist eine
Divergenz der beiden lokalen Dokumente. Um ein korrektes Ergebnis zu
erhalten, muss die Operation 02 unter Einbeziehung von 01 zuerst transfor-
miert werden, bevor sie ausgeführt werden kann. Wird nun zum Beispiel die
Operation 02 auf �Site" 1 in Ins(7, s) transformiert, so wird eine Konvergenz
der Dokumente erzielt.

4 Synchronisation der XML Dokumente

Operational Transformation (OT) ist ein häufig eingesetztes Verfahren zur
Synchronisation verteilter Dokumente in Echtzeit. Die meisten Algorithmen
für Operational Transformation basieren allerdings auf einem linearen Daten-
format. XML hingegen kann als hierarchisches Datenformat betrachtet wer-
den. Bei der Operational Transformation kann ein hierarchisches Datenformat

von Vorteil sein. Ein Problem der OT ist der oben erwähnte History-Buffer.

Collaborative Work und Visualisierung 157

Dieser kann bei entsprechender Anzahl an Benutzern rapide wachsen. Damit
kann sich die Ausführung von neuen Operationen entsprechend stark verzö-
gern, da für jede neue Operation die Operationen im History-Buffer geprüft
werden müssen. Der History-Buffer bei Operational Transformation Algorith-
men für lineare Datenformate bezieht sich immer auf alle Operationen im

gesamten Dokument. Dies hängt mit der Eigenschaft linearer Datenformate
zusammen: Eine Operation, wie zum Beispiel das Einfügen eines Buch-

stabens, hat immer Auswirkungen auf alle nachfolgenden Dokumentteile.
Unterteilt man ein Dokument nun hierarchisch in verschiedene Ein-

heiten, so wirkt sich eine Änderung am Dokument nicht automatisch auf alle
nachfolgenden Dokumentteile aus, sondern nur auf die Bereiche, die sich auf
derselben Hierarchieebene befinden. Ein Beispiel soll diesen Zusammenhang

erläutern:
Ein Textdokument wird in fünf Hierarchieebenen gegliedert: Gesamt-

dokument, Paragraphen, Sätze, Wörter und Buchstaben. Wird nun ein Buch-
stabe in einem Wort eingefügt, so hat dies eine Positionsänderung der Buch-
staben dieses Wortes zur Folge, die nach dem neu eingefügten Buchstaben
stehen. Das Einfügen eines Buchstabens hat allerdings keinen Einfluss auf die
Position der Nachfolgenden Wörter, Sätze oder Paragraphen, da es sich um
ein hierarchisches Dokument handelt.

Dies hat für die Operational Transformation eine wichtige Bedeutung.
Der History-Buffer muss nun nicht mehr für das Gesamtdokument gehalten
werden, sondern für jede Hierarchieebene muss nun ein entsprechender
Buffer angelegt werden. Dies scheint zwar Mehraufwand zu bedeuten, gleich-
zeitig bleiben aber die einzelnen History-Buffer viel kleiner und führen damit
zu einem Vorteil in der Prüfung neuer Operationen und der Berechnung
einer Operationstransformation. Die Prüfung einer neuen Operation muss
gegen weniger Operationen im History-Buffer durchgeführt werden und auch
die Berechnung der Transformation gestaltet sich einfacher.

Zur Zeit existiert nur ein Algorithmus für Operational Transforma-
tion, der auf einem hierarchischen Datenformat basiert [8]. Das dabei verwen-
dete Datenformat ist proprietär und auf eine bestimmte Hierarchietiefe fixiert.
Ziel dieses Forschungsprojektes ist es unter anderem, einen Algorithmus für
Operational Transformation zu entwickeln, der eine variable und beliebige
Hierarchietiefe erlaubt und als Datenformat den XML Standard unterstützt.

Operational Transformation ist sehr gut für die Synchronisation von
strukturellen Operationen wie Einfügen und Löschen von Daten geeignet,
besitzt aber Schwächen bei der Synchronisation von inhaltlichen Operatio-

nen, wie zum Beispiel das Ändern eines Attributs. Hier kann die Operational
Transformation keine Konflikte wie die Intentionsverletzung verhindern. Für

158 Collaborative Work und Visualisierung

diese Problematik muss ein Algorithmus für Operational Transformation
durch zusätzliche Verfahren zur Konsistenzerhaltung ergänzt werden. Des
Weiteren kann durch bestimmte so genannte �Awareness" Mechanismen die
Aufmerksamkeit des Benutzers auf eventuell auftretende Probleme während
des Editier-Prozesses gelenkt werden, um so vorab Inkonsistenzen und
Intentionsverletzungen zu vermeiden. Das CEFX wird daher verschiedene

�Awareness"
Mechanismen zur Verfügung stellen.

XML bietet durch seine Eigenschaften, wie zum Beispiel eine in XML
Schema vorliegende Grammatik weitere Möglichkeiten zur Unterstützung der
Synchronisation. Ziel dieser Forschungsarbeit ist es unter anderem einen
Algorithmus zu entwickeln, welcher diese Eigenschaften von XML Doku-

menten nutzt um eine Verbessung der Konsistenzerhaltung durch Kontext-
prüfung auf Basis von XML Schema zu erreichen.

5 Systemarchitektur des CEFX

Viele kollaborative Echtzeit-Editoren verwenden die replizierte Architektur.
Bei dieser Systemarchitektur gibt es im Gegensatz zu den meisten Client/
Server Systemen, welche eine zentralisierte Architektur verwenden keine zen-
trale Datenquelle oder Server. Jeder Client besitzt dabei eine Kopie des
Server Prozesses und der gemeinschaftlich genutzten Datenquellen. Der
Vorteil einer replizierten Architektur besteht in den schnellen Antwortzeiten
bei optimistischer Ausführung von Operationen. Wird eine lokale Operation

generiert, so wird diese sofort ausgeführt und das Ergebnis wird damit sofort
sichtbar. Im Gegensatz zur zentralisierten Architektur ist dabei kein Aufbau
einer Datenverbindung zum Server oder gar eine sofortige Validierung der
Operation (Stichwort: Sperrung) notwendig, was zu einem deutlichen
Geschwindigkeitsvorteil führt. Die lokal ausgeführten Operationen werden
danach an alle weiteren Clients übertragen und dort ausgeführt. Dabei kann

es zu den schon besprochenen Inkonsistenzen kommen.
Die Systemarchitektur, auf der das CEFX basieren wird, ist eine

Mischung aus der zentralisierten und der replizierten Systemarchitektur. Bei
dieser so genannten Hybrid Architektur gibt es einen zentralen Server, der
immer eine aktuelle Dokumentversion besitzt. Die verschiedenen Clients
besitzen jeweils lokale Kopien des gemeinsam genutzten Dokuments. Wie

auch bei der replizierten Architektur, werden Operationen auf dem Doku-
ment sofort lokal ausgeführt und danach an die anderen Clients übertragen.
Dort werden die Operationen in dem entsprechenden History-Buffer gespei-
chert. Zusätzlich werden die Operationen auch an den Server übertragen. Da

Collaborative Work und Visualisierung 159

das System auf XML als Datenformat basiert, müssen Operationen, die ein
Client empfängt, nur bei Bedarf sofort ausgeführt werden: nämlich nur dann,

wenn ein Benutzer den Bereich eines Dokumentes betrachtet, auf dem ein
anderer gerade Operationen durchführt. Auf dem Server werden hingegen alle
Operationen sofort ausgeführt. Somit liegt auf dem Server immer eine aktuelle
Version des Dokuments vor. Dies ist neben den schnellen Antwortzeiten
beim Editieren ein weiterer Vorteil der hybriden Systemarchitektur. Eine
Kopie des aktuellen Dokuments kann dadurch zum Beispiel immer abgeru-
fen werden, sobald ein neuer Benutzer am kollaborativen Editier-Prozess teil-
nehmen will. Auch kann das Dokument auf dem Server für die Synchroni-

sation genutzt werden. Arbeiten mehrere Personen zum Beispiel an einem
sehr großen Dokument, so ist die Wahrscheinlichkeit, dass diese sich even-
tuell gegenseitig stören relativ gering. Betrachtet nun ein Benutzer einen Teil
des Dokuments das von einem anderen Benutzer intensiv bearbeitet wurde,
so muss zuvor die lokale Kopie des Dokuments synchronisiert werden. Dies
kann nun entweder durch Ausführen der Operationen im lokalen History-

Abbildung 5: Hybride Systemarchitektur des CEFYX

160 Collaborative Work und Visualisierung

Buffer geschehen, oder durch Abrufen der benötigten Teile 'der aktuellen
Dokumentversion vom zentralen Server. Enthält der lokale History-Buffer
zum Beispiel sehr viele Operationen, so ist es eventuell schneller, die aktuel-
len Teile vom Server nachzuladen, als die entsprechenden Operationen zu
prüfen, zu transformieren und auszuführen.

Die beim CEFX verwendete Architektur macht erst durch die hierar-
chische Struktur des zu Grunde liegenden Datenformats (XML) Sinn. Bei
Systemen, die auf einem linearen Datenformat basieren, würde diese
Architektur eher hinderlich wirken. Dort hat sich die replizierte
Systemarchitektur etabliert. Dieser neue Ansatz verspricht eine effiziente
Möglichkeit zur Synchronisation verteilter Dokumente zu werden und macht
damit ein Editieren in Echtzeit möglich.

6 Ausblick

Der Einsatz von XML in freien und kommerziellen Produkten aus verschie-
densten Bereichen nimmt ständig zu. Eines von vielen Beispielen ist das
OpenOffice Produkt von Sun Microsystems, welches als Speicherformat für
Dokumente XML einsetzt. Auch Microsoft kann sich vor der XML-Welle
nicht verschließen und bietet in der neuesten MS Office Version nun auch die
Möglichkeit an, XML Dokumente zu importieren.

Das �Collaborative Editing Framework for XML" (CEFX) soll eine ein-
fache Möglichkeit schaffen beliebige Editoren, welche auf dem Datenformat
XML basieren, mit kollaborativen Fähigkeiten auszustatten. Dazu wird eine
Programmierschnittstelle angeboten, die eine einfache Einbindung in beste-
hende Editoren ermöglichen soll. Das so genannte Application Programming
Interface (API) des CEFX soll dabei neben den normalen Funktionalitäten
wie Einfügen, Löschen, Verschieben und Ändern von Elementen im vor-
liegenden XML Dokument auch �Awareness"

Mechanismen bereitstellen.
Dabei sollen bestimmte Metainformationen zum Beispiel über den aktuellen
Fokus eines Benutzers im Dokument über �Call-Back" Funktionen abgerufen
und im Editor entsprechend dargestellt werden können. Eine zusätzliche
Validierungsfunktion der Benutzereingaben soll auf Basis von XML Schema
eine quasi semantische Vorprüfung der durchgeführten Dokumentänderun-
gen erlauben. Damit können inhaltliche Fehler im Voraus vermieden werden.
Da das Framework eine generelle Unterstützung von XML als Datenformat
vorsieht, soll praktische jede Form von XML Anwendung damit unterstützt
werden können.

Collaborative Work und Visualisierung

7 Anhang

Einige Begriffserläuterungen:

Divergenz
Die Abbildung 1 zeigt ein Szenario, bei dem drei Per-
sonen auf einem gemeinsamen Dokument in Echtzeit
arbeiten. Dazu wird vor dem Editier-Vorgang vom
Dokument jeweils eine lokale Kopie gemacht, auf der
die Teilnehmer dann Änderungen durchführen. Die
Abbildung 1 zeigt dazu den zeitlichen Ablauf der Opera-
tionen 01 bis 04, wie sie bei den verschiedenen
Teilnehmern (Site 1-3) durchgeführt werden. Dabei
werden die Operationen in jeweils unterschiedlichen
Reihenfolgen ausgeführt. Die Reihenfolge der Opera-
tionen

�Site
1" ist 01,02,04,03, Site 2" 02,01,03,04

und Site 3" 02,04,03,01.
Sind die Operationen 01,02,03,04 nicht

kommutativ, so ist das endgültige Ergebnis der Opera-
tionen eventuell bei jedem Teilnehmer unterschiedlich.
Eine Divergenz zwischen den verschiedenen lokalen
Dokumenten liegt vor. Betrachten wir dazu die Baum-
struktur eines einfachen XML Dokuments. Zu Beginn
sind die beiden Bäume identisch.

Nun werden wie im obigen Szenario gezeigt
verschiedene Operationen auf den Bäumen durchge-
führt. Operation 01 erzeugt auf �Site"

1 einen Kind-
knoten A unterhalb Knoten 2 an erster Position. Opera-
tion 2 erzeugt auf �Site"

2 einen neuen Kindknoten B
auch unterhalb Knoten 2 an Position 1.01 und 02 wer-
den quasi zeitgleich auf dem lokalen Dokument ausge-
führt. Danach werden sie jeweils an den anderen
Teilnehmer übertragen. Durch die Ver-zögerung in der
Ausführung der Operationen, ist die Reihenfolge in wel-
cher diese ausgeführt werden auf den jeweiligen loka-
len Dokumenten unterschiedlich. Auf dem Dokument
Site 1" wird 01 vor 02 ausgeführt. Auf dem Dokument
Site 2" geschieht dies in umgekehrter Reihenfolge.

Die beiden Dokumente sind divergent.

Sit eI Sit e2 Sit e3

0, 0,

Time 0;

03

Abbildung 1:

Site 1 Site 2

11

232 3

Abbildung 2.1: Beispiel Divergenz:
zwei identische Bäume

Intentionsverletzung
Eine Intentionsverletzung tritt dann auf, wenn zwei Operationen parallel zum Beispiel ein Attribut eines Objektes auf
zwei unterschiedliche Werte abändern. Nehmen wir zum Beispiel einen kollaborativen Grafikeditor in dem die
Operationen 01 und 02 parallel von zwei Benutzern ausgeführt werden. Operation 01 ändert dabei die Farbe eines
Objektes innerhalb einer Grafik auf grün. Zur selben Zeit führt der zweite Benutzer Operation 02 auf dem selben
Objekt in der selben Grafik aus, wobei 02 die Farbe des Objekts auf rot ändert. Nun werden die Operationen jeweils
zum anderen Benutzer übertragen. Das Ergebnis ist, dass auf beiden Seiten das Objekt den falschen Farbwert
besitzt. Es ist in diesem Fall nicht möglich den Konflikt ohne weiteres automatisch zu lösen, solange das betroffe-
ne Attribut nicht gleichzeitig mehrere Werte zulässt. In diesem Fall ist es nicht möglich einen konsistenten Eindruck
dessen, was die Intention des jeweiligen Benutzers war, herzustellen. Eine Intentionsverletzung liegt vor.

161

Abbildung 2.1: Beispiel Divergenz:
zwei divergente Bäume

162 Collaborative Work und Visualisierung

Kausalitätsverletzung
Wie im Szenario in Abbildung 1 gezeigt, wird die Operation 03 erst nach der Ankunft von 01 bei Site 2" generiert.
Wurde 03 bei Site 2" aufgrund von 01 generiert dann ist 03 von 01 abhängig. Zwischen 01 und 03 besteht eine
so genannte kausale Abhängigkeit der Ereignisse. Auf Site 3" wird nun im obigen Szenario die Operation 03 vor
der Operation 01 ausgeführt. Ist 03 aber kausal von 01 abhängig, so entsteht bei Site 3" eine Kausalitätsverlet-

zung, da sich 03 auf einen zu diesem Zeitpunkt noch
nicht vorhandenen Kontext bezieht. Eine Kausalitäts-

Site 2 Site 3
verletzung kann zu einem Zustand führen, in dem eine
Operation nicht durchgeführt werden kann, da die Ope-

ration, von der sie abhängt noch nicht ausgeführt wurde.
Die Abbildung 3 zeigt, wie auf Site 2" die ý'

Operationen 01 und 03 in der richtigen Reihenfolge 2A2A

ausgeführt werden. Operation 01 fügt dabei einen 0,
Knoten A unterhalb Knoten 1 ein. Operation 3 fügt

BB
danach einen Knoten B unterhalb Knoten A ein. Dies
führt bei Site 3" zu einem Zustand in dem Operation
03 nicht durchgeführt werden kann, da 01 noch nicht
durchgeführt wurde. Abbildung 3: Kausalitätsverletzung

Kausalordnung
Die Kausalordnung ist eine Halbordnung, die über die Relation der kausalen Abhängigkeit über einer Menge von
Ereignissen definiert wird: Ein Ereignis A ist eine Ursache von Ereignis B (A <B bzw. A liegt vor B) oder umgekehrt
(A > B), oder die Ereignisse beeinflussen sich gegenseitig nicht (A II B), das heißt, sie sind kausal unabhängig oder
nebenläufig. Die Kausalität wird zu dem von den meisten Theoretikern als transitiv betrachtet: Wenn Ereignis A eine
Ursache von B ist, und B ist eine Ursache von C, dann ist A auch eine Ursache von C (wenn A<B und B<C ist,
dann ist auch A< C). Andere wenden dagegen ein, dass zumindest unsere gewöhnliche Urteilspraxis bezüglich der
Kausalität nicht transitiv ist, da wir bei der Suche nach der Ursache eines Ereignisses stets nach dem unmittelbar
verursachenden Ereignis forschen.

Deadlock
Ein Deadlock (auch Verklemmung genannt) ist in der Informatik ein Zustand von Prozessen, bei dem mindestens
zwei Prozesse untereinander auf Betriebsmittel warten, die dem jeweils anderen Prozess zugeteilt sind.
Beispielsweise kann einem Prozess p1 der Bildschirm zugeteilt worden sein. Gleichzeitig benötigt p1 allerdings den
Drucker. Auf der Gegenseite ist der Drucker dem Prozess p2 zugeteilt, der wiederum den Bildschirm fordert. Ein
Beispiel für eine Verklemmung aus dem realen Leben ist eine Straßenkreuzung, an der von allen vier Seiten ein Auto
gekommen ist und nun (die Regel rechts vor links vorausgesetzt) darauf wartet, dass das Auto rechts von ihm fährt.
Nach Coffman et al. (1971) müssen vier notwendige Kriterien für einen Deadlock zutreffen:

1. Die Betriebsmittel werden ausschließlich durch die Prozesse freigegeben (No Preemption).
2. Die Prozesse fordern Betriebsmittel an, besitzen aber zugleich den Zugriff auf andere (Hold and Wait).
3. Der Zugriff auf die Betriebsmittel ist exklusiv (Mutual Exclusion).
4. Nicht weniger als zwei Prozesse warten in einem geschlossenen System (Circular Wait).

Deadlocks können bei Systemen eintreten, die fähig sind mehrere Prozesse parallel ablaufen zu lassen (Multitask-
systeme) und bei denen die Reihenfolge der Betriebsmittelvergabe nicht festgelegt ist.

Collaborative Work und Visualisierung 163

8 Referenzen
[CVS] Concurrent Versions System. A open standard for version control. httpJ/ccvs. cvshome. org
[CWORD] C. Sun, Y. Yang, Y. Zhang, and D. Chen: A consistency model and supporting schemes in real-time

cooperative editing systems, Proc. of the 19th Australian Computer Science Conference, Melbourne,
S. 582-591, Jan. 1996.

[MSVSS] Microsoft Corporation. Visual SourceSafe http: //msdn. microsoft. com/vstudio/previouslssafe/
[REDUCE] D. Chen. REDUCE- REal-time Distributed Unconstrained Collaborative Editing System. Research Project

at the Griffith University, Brisbane. 2001.
[SUN1] C. Sun, Y. Yang, Y. Zhang, and D. Chen: A consistency model and supporting schemes in real-time

cooperative editing systems, Proc. of the 19th Australian Computer Science Conference, Melbourne,
S. 582-591, Jan. 1996

[SUN2] C. Sun and D. Chen. Consistency maintenance in real-time collaborative graphics editing systems. ACM
Transactions on Computer-Human Interaction. 2002.

[SAMS] H. Skaf, P. Molli. SAMS - Synchronous Asynchronous Multisynchronous Editor. Forschungsarbeit an der
Universite Henri Poincare, Nancyl.

[SMIL] SMIL - Synchronized Multimedia Integration Language. www. w3. org/AudioVideo/
[SVG] SVG - Scalabale Vector Graphics 1.0 Specification, 2001: www. w3. org/TR/SVG/
[WDAV] WebDAV Web Distributed Authoring and Versioning. Arbeitsgruppe der IETF.

www. ics. uci. edu/-ejw/authoring/
[WIKI] Im World Wide Web verfügbare Seitensammlungen, die von den Benutzern nicht nur gelesen, sondern

auch online geändert werden können. http: //de. wikipedia. org/wiki/Wiki
[X3D] X3D - EXtensible 3D. Draft specification committed to ISO/IEC JTC1/SC24 for registration, December

2002: www. web3d. org/x3d. htmi

9 Literaturverzeichnis

Conference Proceedings:
[1] C. Sun and D. Chen. Consistency maintenance in real-time collaborative graphics editing systems. ACM

Transactions on Computer-Human Interaction. 2002.
[2] D. Chen. REDUCE - Real-time Distributed Unconstrained Collaborative Editing System. Research Project

at the Griffith University, Brisbane. 2001.
[3] A. H. Davis, C. Sun, and J. Lu. Collaborative Editing of XML Documents. An Operational Transformation

Approach. International Conference on Supporting Group Work. ACM Proceedings. 2001.
[4] Peter Naur. Revised Report on the Algorithmic Language ALGOL 60. Communications of the ACM, Vol. 3

No. 5, S. 299-314. May 1960.
[5] R. Galli and Y. Luo. MU3D: A Causal Consistency Protocol for a Collaborative VRML Editor. ACM

Proceedings. Web3D-VRML: Fifth symposium on Virtual Reality Modeling Language. 2000.
[6] C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. ACM Proceedings. SIGMOD

International Conference on Management of Data. 1989.
[7] C. Sun and C. Ellis. Operational Transformation in Real-Time Group Editors: Issues, Algorithms, and

Achievements. ACM Proceedings. ACM conference on Computer supported cooperative work, Seattle,
Washington. 1998.

[8] C. (gnat and M. Norrie. Tree-based model algorithm for maintaining consistency in real-time

collaborative editing systems. ACM. Fourth International Workshop on Collaborative Editing Systems,

New Orleans, Louisiana. 2002.
[9] C. Sun, X. Jia, and et al. Achieving Convergence, Causality-preservation, and Intention-preservation in

Real-time Cooperative Editing Systems. ACM. Transactions on Computer-Human Interaction. 1998.
[10] P. A. Franaszek, J. T. Robinson, and A. Thomasian. Concurrecy Control for High Contention Environments.

ACM. Transactions on Database Systems. 1992.

1664 Collaborative Work und Visualisierung

[11] D. J. Rosenkrantz, R. Stearns, and P. Lewis. System Level Concurrency Control for Distributed Database
Systems. ACM. Transactions on Database Systems. 1978.

[12] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency Control. ACM. Transactions on
Database Systems. 1981.

[13] D. Gawlick. Processing Hot Spots in High Performance Systems. IEEE Springer. CompCon Conference.
1985.

[14] C. Ignat and M. Norrie. Customizable Collaborative Editor Relying on treeOPTAlgorithm. Kluwer Academic
Publishers. Eighth European Conference on Computer Supported Cooperative Work. 2003.

[15] C. J. Fidge. Timestamps in message-passing systems that preserve Use partial ordering. University of
Queensland, Australia. 11th Australian Computer Science Conference. 1988.

[16] M. Ressel, D. Nitsche-Ruhland, and et al. An integrating, transformation-oriented approach to
concurrency control and undo in group editors. ACM. Conference on Computer Supported Cooperative
Work. Nov. 1996.

[17] M. Suleiman, M. Cart, and et al. Serialization of Concurrent Operations in a Distributed Collaborative
Environment. ACM. International Conference on Supporting Group Work. 1997.

[18] P. Dourish. ExtendingAwareness Beyond Synchronous Collaboration. Position paper. CHI 97 Workshop on
Awareness in Collaborative Systems. 1997. S. 31.

[19] C. Gutwin, M. Roseman, and S. Greenberg. A Usability Study ofAwareness Widgets in a shared Workspace
Groupware System. ACM. Conference on Computer Human Interaction '96 Conference Companion. 1996.

[20] R. M. Baecker, D. Nastos, I. R. Posner, and K. L. Mawby. The User-Centred Iterative Design of Collaborative
Writing Software. Conference on Computer Human Interaction '93.1993.

[21] Abdessamad Imine, Pascal Molli, Gerald Oster, and Michael Rusinowitch. Proving Correctness of Trans-
fonnation Functions in Real-Time Groupware. Kluwer Academic Publishers. ECSCW 2003: Eighth
European Conference on Computer Supported Cooperative Work. Sept. 2003.

Books
[22] Brian W. Kemigham and Dennis M. Ritchie. The C Programming Language, Second Edition. Prentice Hall

Inc. 1988.
[23] Th. Michel. XML Kompakt. Eine praktische Einführung. Page 36. Carls Hanser Munich. 1999.
[24] F. Arciniegas. XML Developer's Guide. Page 49. Franzis. Poing. 2001.
[25] F. Van der Vlist. XML Schema. O'Reilly. 2002.
[26] R Walmsley. Definitive XML Schema. Prentice Hall PTR London. 2002.
[27] R. Wyke and A. Watt. XML Schema Essentials. Wiley New York. 2002.
[28] C. J. Date. An Introduction To Database Systems. Addison-Wesley. 2000.
[29] P. Bernstein, N. Goodman, and V. Hadzilacos. Concurrency Control and Recovery in Database Systems.

Addison-Wesley. 1987.
[30] L. Lamport. Time, clocks and the ordering of events in a distributed system. Computer Associates. 1978.
[31] P. Bernstein, A. V. Hadzilacos, and et al. Concurrency control and recovery in database systems. Addison-

Wesley. 1987.
[32] T. Haerder. Datenbanksysteme: Konzepte und Techniken der Implementierung. 2. Edition. Springer. 2001.
[33] P. A. Bernstein. Newcomer. Transaction Processing. Morgan Kaufmann. 1997.

Articles
[34] P. Peinl. Synchronisation in zentralisierten Datenbanksystemen. Informatik-Fachberichte. 161. Springer.

1987.
[35] P. Butterworth, A. Otis, and J. Stein. The GemStone Object Database Management System.

Communications of the ACM. S. 64-77. ACM. 1991.
[36] M. Raynal, M. Singhai, and. Logical Time. Capturing Causality in Distributed Systems. IEEE Computer.

S. 49-56. IEEE. 1996.

Collaborative Work und Visualisierung 165

Theses
[37] D. Chen. Consistency Maintenance In Collaborative Graphics Editing Systems. Dissertation at the Griffith

University Brisbane. 2001.
[381 J. C. Lauwers. Collaboration transparency in desktop teleconferencing environments. Ph. D Thesis.

Stanford, CA. 1990.
[391 Csaszar Lorant Zeno. Real-Time Collaborative Graphical Editor. Swiss Federal Institute of Technology

Zurich. Institute of Information Systems, Global Information Systems Group. June 2003.

RFCs
[40] T. Bemers-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol - H1TP/1.0. RFC 1945. May 1996.

Unks
[41] Microsoft Corporation. 2000. www. microsoft. com/windows/netmeeting/
[421 The History of HTML www. w3. org/MarkUp/historicaIW3C
[43] Concurrent Versions System. A open standard for version control, httpi/ccvs. cvshome. org

