We use cookies on this website, you can read about them here. To use the website as intended please... ACCEPT COOKIES
UAL Research Online

Effects of lipid nanocarriers on the performance of topical vehiclesin vivo

Moddaresi, Mojgan and Tamburic, Slobodanka and Williams, Stefanie and Jones, Stuart A. and Zhao, Yanjun and Brown, Marc B. (2009) Effects of lipid nanocarriers on the performance of topical vehiclesin vivo. Journal of Cosmetic Dermatology, 8 (2). pp. 136-143. ISSN 1473-2130

Type of Research: Article
Creators: Moddaresi, Mojgan and Tamburic, Slobodanka and Williams, Stefanie and Jones, Stuart A. and Zhao, Yanjun and Brown, Marc B.
Description:

Background/aims  Nanocarrier systems have been extensively studied for their suitability in personal care formulations. Theoretically, they could enhance skin delivery of active compounds, thereby improving in vivo efficacy of the products. As such the aim of this study was to evaluate the effect of a lipid nanocarrier (LNC) system loaded with tocopheryl acetate (TA) on the hydration, biomechanical properties, and antioxidant capacity of human skin, when used in two different vehicles, and compare it with a non-LNC formulation.

Methods  TA-loaded lipid nanocarriers (TA-LNCs) were produced by the phase inversion method, using physiological lipids and purified by ultra-centrifugation. They were incorporated into a hydrophilic gel and foam, and their performance compared with a saturated TA solution in silicon oil. Skin hydration and biomechanical properties were measured by means of a corneometer and a cutometer, respectively, while a high-resolution spectrophotometer was used to assess skin redness after stimulation by methyl nicotinate in a micro-inflammatory test. Both short-term (3 h) and long-term trials (4 weeks) were performed.

Results  The results confirmed that the LNCs enhanced skin hydration in both studies, while skin viscoelastic parameters remained practically unchanged during the 4-week study. The antioxidant assessment failed to show significant difference between the test sites.

Conclusions  TA-loaded LNCs exhibited the ability to enhance skin hydration, while their effect on skin biomechanical properties and on antioxidant efficacy could not be statistically proved.

Official Website: http://dx.doi.org/10.1111/j.1473-2165.2009.00440.x
Publisher/Broadcaster/Company: Wiley-Blackwell
Your affiliations with UAL: Colleges > London College of Fashion
Date: June 2009
Digital Object Identifier: 10.1111/j.1473-2165.2009.00440.x
Date Deposited: 31 May 2011 14:53
Last Modified: 08 Oct 2015 05:31
Item ID: 4129
URI: https://ualresearchonline.arts.ac.uk/id/eprint/4129

Repository Staff Only: item control page | University Staff: Request a correction